Advanced Mathematical Perspectives 1
Lecture 12: Diffusion and Smoothing
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Section 1

Diffusion as Smoothing
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Diffusion as Smoothing

@ We can think of diffusion as a “smoothing out” or spreading
» notice the Gaussian (Bell curve) shape
@ Underlying model is often Brownian motion of molecules

» molecules bounce around at random, slowly diffusing outwards, or
spreading kinetic energy (heat)
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Section 2

Smoothing out noise — pattern recognition
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Denoising

@ We saw that diffusion “smoothed” out a pattern
» why would we want to do that?

Matthew Roughan (School of Mathematical ¢



Denoising

@ We saw that diffusion “smoothed” out a pattern
» why would we want to do that?

@ Sometimes there is more than one “pattern” present, and we can
filter out one to see the other one better
@ e.g., a common case is where a pattern is obscured by noise
» we call this denoising
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Denoising example
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Denoising example
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Diffusion patterns in “dithering”

Another example of diffusion ideas in image processing
@ Some devices only have two colours (black and white), or a small set
of colours (yellow, cyan, magenta), and can’'t mix them.
@ So we build up an image from smaller dots
» sometimes called half-toning
@ But if the pattern of the dots is too regular, we start to see artefacts,

so often a “diffusion” pattern!® is used to randomise the dots, to avoid
artefacts

1We will talk a little more about this randomisation in the next lecture.
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Diffusion patterns in “dithering”

@ Newsprint is the classic example

from the Australian, Dec 11th, 2005
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Why does dithering work?

@ Remember | said that we (humans) are designed to find patterns

@ Our eyes (and brain) are really good at denoising
@ So we see the pattern (the image) instead of the dithering
> best dithering patterns have some randomness so that we don’t see the

wrong pattern
» one of the most famous uses “error diffusion” to spread out errors: see

Floyd-Steinberg error diffusion algorithm
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Colour dithering

@ The same all works in colour as well

@ The idea has been exploited in Art: Roy Lichtenstein (1923-97)
played with it in his art, exaggerating the dithering patterns
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Aliasing in images

Aliasing has technical roots in frequency analysis, but in images we can see
it visually, particularly in computer generated images or video

@ ‘“jaggies” in images and fonts
@ Moire patterns

@ marching ants

Anti-aliasing usually involves some form of smoothing.
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Anti-aliased fonts

f f

aliased anti-aliased
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Takeaways

o Diffusion is one of the underlying models for many physical processes
(often ones that build patterns)

@ It results in “smoothing” of an initial signal, and this can be used in
filtering and denoising patterns

@ We have implicit filtering going on in our heads!

@ We will come back to use diffusion again as part of a larger pattern
formation process, but next we will look at another model for diffusion
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Section 3

Extras



Convolutions and Moving Average Filters

@ Solving a set of difference equations to approximate diffusion isn’t the
best (computational) way to solve our problem

@ What we want to do is use the idea of smoothing to build a filter that
is a bit more direct

@ We can do this with convolutional filters

@ I'm not going to go into much more detail, except that

> we often call these a Moving Average (MA) filter because for each data
point, we take an average of a window around the point, and we move
this window onto the next point

» we can implement these easily in MATLAB using

conv % for 1D signals
conv?2 % for 2D signals, such as images
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Convolutions and Moving Averages

@ Take an average in a moving window

A

take average in window

>

e Equivalent to doing a local least-squares regression at each point (see
statistics for notes on regression).
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Convolutions and Moving Averages

@ Take an average in a moving window

A

move window and repeat

>

e Equivalent to doing a local least-squares regression at each point (see
statistics for notes on regression).
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Convolutions and Moving Averages

o Take an average in a moving window

A

less noisy signal

>

@ Equivalent to doing a local least-squares regression at each point (see
statistics for notes on regression).
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Convolutions and Moving Averages

o Take an average in a moving window

A

less noisy signal

>

@ Equivalent to doing a local least-squares regression at each point (see
statistics for notes on regression).

@ In the image example | used conv2 with a 31 x 31 pixel window
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Further reading |
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