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Reminder: Random Walk Definition

Take a series of random variables {Xi} for i = 1, 2, . . . defined by

Xi =

{
1, with probability 1/2,
−1, with probability 1/2.

Now we could describe the state of our random walk at time n as a
random variable Sn, defined by S0 = 0 and

Sn =
n∑

i=1

Xi

This is a very common type of random process, and often analysed.
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Reminder: Limiting Distributions

The Central Limit Theorem says that for any sum like this1

√
n

[
Sn
n
− µ

]
→ N(0, σ2),

where N(0, σ2) denotes the normal or Gaussian distribution with mean 0
and variance σ2 (where this is the variance of the Xi ).

Here, Xi has µ = 0 and σ2 = 1, so

Sn√
n
→ N(0, 1),

1There are some conditions, and we need to define the notion of limit for
probabilities more carefully.
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Section 1

Random Walks and Diffusion
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Imagine that instead of a random walk on the integers, we do a random
walk on points dx apart, so xi = i × dx

And we don’t jump at every step, so now take

Xi =


dx , with probability q,
0, with probability 1− 2q,
−dx , with probability q.

and Sn =
∑n

i=1 Xi

xi-2 xi-1 xi xi+1 xi+2

q q

Now represent the probability of being at point xi at time tj by

Prob (Sj = xi ) = p(xi , tj)
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A Random Walk is a Markov Chain

A Markov chain is a random process where we transition (at random)
between a set of states, and where the next transition depends ONLY
on the current state.

I The Markov property is often called the memoryless property because
after each transition we “forget” the history of the process

A random walk (as described above) is a Markov chain
I the next state depends only on the current state

I There is lots of theory to learn about Markov chains
F we touch on them in a few course, but you won’t see the real details

until Applied Probability in 3rd year

I But I can do a little bit here, but I won’t try to use too much theory
that you don’t already know (I hope)
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A Random Walk is a Markov Chain

The defining property of a Markov chain – lack of memory – can be
expressed through conditional probabilities

Prob (Sj+1 = xi | S0 = xk0 , . . . ,Sj = xk) = Prob (Sj+1 = xi | Sj = xk)

That is, the probability of being in a particular state, given the entire
history of the process is equal to the probability given only the most recent
state.

For our random walk, we can only jump one step at a time, and so

Prob (Sj+1 = xi | Sj = xk) =


q, xi = xk − dx
1− 2q, xi = xk
q, xi = xk + dx
0, otherwise.
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A Random Walk is a Markov Chain

The Law of Total Probability states2

p(xi , tj+1) =
∑
xk

Prob (Sj+1 = xi | Sj = xk) Prob (Sj = xk)

Summing over the possible states (at time n − 1) we get

p(xi , tj+1) = (1− 2q)p(xi , tj) + qp(xi+1, tj) + qp(xi−1, tj)

= p(xi , tj) + q
[
p(xi+1, tj)− 2p(xi , tj) + p(xi−1, tj)

]

2Remember that p(xi , tj+1) = Prob (Sj+1 = xi ).
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Random Walk = Diffusion

So, at each time step, the probability we will be at point xi will be given
by the difference equation

p(xi , tj+1) = p(xi , tj) + q
[
p(xi+1, tj)− 2p(xi , tj) + p(xi−1, tj)

]
Remember the difference equation we found for approximately solving the
diffusion equation ∂u

∂t = α∇2u was

u(xi , tj+1) = u(xi , tj) +
αdt

dx2
[
u(xi+1, tj)− 2u(xi , tj) + u(xi−1, tj)

]
Note that if we set q = αdt/dx2, the two are identical!
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Random Walk = Diffusion

If we take q = αdt/dx2 the probability equations for our random walk
are the same as those for the finite difference approximation to the
diffusion equation.

If we take the limit dx → 0, and dt → 0, such that q is kept constant,
the limit of the random walk would be a diffusion process exactly.

I so we can think of the state probabilities of a random walk with very
small steps, in very small time intervals as a diffusion process, i.e., the
probabilities can be modelled as “diffusing”

Underlying this is the nature of the diffusion — a gas is made up of
many particles, each bouncing around at random, and so we might
think of diffusion as an “average” of all of these random walks.
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Random Walk = Diffusion

One of the consequences of this correspondence is that theorems derived
in one domain can give me insights into behaviour in the other:

The Central Limit Theorem tells me that a diffusion will tend towards
a Gaussian (normal) distribution (given no boundaries ...)

The random walk formulation assumed we had no boundaries – it
might be useful to model a system with complicated boundaries using
the heat equation?

In other ways the two systems vary:

Probabilities must always add to one, but heat can be added or lost
from a system.
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Section 2

Where are we going?
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To Random Walk or Diffuse

So, we can think of

a random walk as a way of approximating diffusion

diffusion as a way of approximating a random walk

Which is correct?
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Model Selection

Both models are just models

Neither is “real”

The model choice that is the best approximation to reality depends
on the particular problem

I Model of heat: diffusion; because (i) the size of atoms is so small that
we can approximate a solid as a continuum, (ii) we only need concern
ourselves with the “average” behaviour, and (iii) diffusion is in some
ways simpler.

I Model of a bank queue: a random walk like process, because (i) the
number of people is very obviously discrete, and (ii) the random walk
gives a better idea of short-term variability, i.e., we don’t just care
about the average number of people in a queue.

I Model of disease spread: could be either, depending on the setting and
parameters.
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Are there other models for this type of thing?

Discrete Continuous

Random
(Stochastic)

Random Walk

Deterministic

Table: Model classes
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Are there other models for this type of thing?

Discrete Continuous

Random
(Stochastic)

Random Walk

Deterministic Diffusion

Table: Model classes
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Are there other models for this type of thing?

Discrete Continuous

Random
(Stochastic)

Random Walk ??? models paths

Deterministic Difference
approximation

Diffusion models averages

Table: Model classes.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)AMP1 15 / 17



Modelling is an Art

There is no “perfect” model

Deriving good models requires
I a big tool box – lots of knowledge about mathematics
I knowledge of the “physics” of the system being modelled
I understanding of the trade-offs in various approximations
I a keen sense of mathematical aesthetics

I’m trying to give you pieces of this, but particularly the third and
forth points

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)AMP1 16 / 17



Takeaways

Random walks!

There are many ways to model the same system

Models have various pros and cons
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Section 3

Extras
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Brownian Motion

The classic case of Brownian motion arises when you observe pollen
particles floating in coffee.

I the particles bounce around follow what we might approximate as a
random walk

But,
I the length of the jumps can vary
I the process (the location of the particles) is a continuous state,

continuous time process

Common mathematical model is the Wiener process
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Wiener process

In your workshop, we simulated 1/f noise

The sequence had finite length N, but we could have (in theory)
extended this to N →∞, presuming the gaps between samples ↓ 0

If α = 2.0 this is called the Wiener process or sometimes the
Brownian motion process
https://en.wikipedia.org/wiki/Wiener_process

The process is continuous but stochastic

The process is nowhere differentiable, and has lots of other interesting
mathematical properties

Its also statistically self-similar
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Wiener process as a limit of a random walk

Given a random walk Sn =
∑n

i=1 Xi , take the process

Wn(t) =
1√
n
Sbntc

As n→∞ this is as if we made the intervals between the lattice point go
to zero as we did before, but we are looking at the sample path, not the
probabilities.

The sample paths form a Wiener process for t ∈ [0, 1]
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Brownian Bridge

Imagine a Brownian motion (or Wiener process) pinned at both ends.

Technique to generate

Take a line, and perturb the mid-point by a Gaussian random variable

Do the same to each of the resulting lines (but scaling the
perturbation by 1/

√
2)

Continue this indefinitely
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Diffusion Limited Aggregate (DLA)

Particles follow a random walk (due to Brownian motion), coming to
rest when they touch the aggregate

They form fractal “trees”

https://en.wikipedia.org/wiki/Diffusion-limited_aggregation
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Further reading I

Paul C. Bressloff, Stochastic processes in cell biology, ch. Diffusion in Cells:
Random Walks and Brownian Motion, Springer, 2014,
http://www.springer.com/gp/book/9783319084879.

Sheldon Ross, Introduction to probability models, Academic Press, 2010.
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