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Entropy and Mutual Information
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Information, defined intuitively and informally, might be

something like 'uncertainty’s antidote.’
Brian Christian,

The Most Human: What Talking with Comput-
ers Teaches Us About What It Means to Be Alive
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Section 1

Entropy: properties



Simple Properties

@ Axiomatic properties hold: e.g.,

> H(X) >0

» H(-) is a function of probabilities, not the values of X.
Q@ 0 < H(X) <log|Q|

> zero iff X is deterministic

> log|Q| iff X is uniform (we'll prove this in a minute)
@ For a Bernoulli RV with p = 1/2, we have H(p) =1 bit

@ i.e., this defines the units of information

© H(X|Y)# H(Y|X)
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Entropy Chain Rule

Theorem (Chain Rule)

H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X]Y).

Proof.
plx,y) = p(x)p(ylx)
log p(x,y) = logp(x) + log p(y|x)
Ellogp(x,y)] = E[logp(x)] + E [log p(y|x)]-
by linearity of expectations, and similarly for the second form. O
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Entropy Chain Rule: Corollaries

Theorem (Chain Rule Corollary)
H(X, Y|Z) = H(X|Z) + H(Y|X, Z) }

Don't confuse with

H(Y, X|Z) = H(X|Z) + H(Y|X, Z)

Theorem (Chain Rule Corollary) }

H(X) — HXIY) = H(Y) — H(Y|X).

But remember that H(X|Y) # H(Y|X) in general.
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Entropy Chain Rule: General form

Theorem (Chain Rule)
Let X1, Xa, ..., Xp have joint PMF p(xi,x2,...,%n), then

n
H(X1, X, Xn) = > H(Xi|Xi—1, ..., X).
i=1

Proof.

Just use repeated applications of the two-variable chain rule, or prove
directly in the same manner as the two-variable rule. O

v

Example:

H(Xl,Xz,X3) = H(Xl) + H(X2|X1) + H(X3|X2,X1).
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Relative Entropy Chain Rule

Theorem (Chain Rule)

D(p(x,y)|[a(x,y)) = D(p(x)||a(x)) = D(p(y|x)|a(y|x))
Proof.

Similar to previous two-variable proof.
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Relative Entropy Properties

Theorem

D(pllq) =0

with equality only iff p(x) = q(x) for all x.

Proof.

oot £ -2 < -eue 23]

q(X) q(X)
by Jensen's inequality, as — log is strictly convex, and so equality arises
only when p/q is a constant (in this case 1 when p = q for all x). Next

—D(pllq) < IogE[ ] IogZp i Iogz (x)=1logl=0

Ol

o
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Corollary

Theorem

H(X) < log|Q].

Proof.

Take distributions p(x) and compare it to the uniform distribution

u(x) =1/|9|:

Dipll) = =) log%

= —Zp(x log u(x) —i—Zp ) log p(x
= —Iogupr —

X
= log|Q] - H(X)

And we already know that D(p||u) > 0. O
v
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Convexity of relative entropy

Theorem

The relative entropy D(p||q) is a convex function of (p, q), i.e., for two
pairs of distributions (p™), gM)) and (p(?), g(?).

D()\p(l) +(1- )\)p(2)H>\q(1) +(1- )\)q(2))
< )\D(p(l)”q(l)) +(1— )\)D(p(2)Hq(2))

forall 0 < XA < 1.

Proof.
The proof is just another application of Jensen's (or Gibbs') inequality, but
is a bit messy, so | leave it to the reader. O

v
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Corollary: concavity of H

Theorem
The entropy H(X) = H(p) is a concave function of p, i.e.,

AW + (1= X)p®) > AH(pW) + (1 - N)H(p?).

Proof.
As before
H(p) = log |2 — D(p||u),
so the result follows directly from the convexity of D. Ol

v

Intuitively this means that if we mixed two random variables, i.e., we take
a Bernoulli trial with probability A, and use it to select either X or X3, the
resulting uncertainty is larger than the weighted mixture of the two
uncertainties (as you would expect, | hope)
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Conditioning reduces entropy

As we might expect, conditioning on Y (i.e., saying we know Y') reduces
the uncertainty about X, unless they are independent.

Theorem
H(X]Y) < H(X),

with equality only when X and Y are independent.
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Conditioning reduces entropy
Proof.

Given p(x, y) define q(x,y) = px(x)py(y), where px(x) and py(y) are
the marginal distributions of X and Y respectively. Now define

I(X;Y) = D(p(x,y)||a(x,y)) = E [log ’;g(%)] :

By definition of conditional probabilities

p(X. Y) }: [b p(X|Y)

E |0gm g px(X) } = E [log p(X|Y)]—E [log px(X)] ,

So
I(X;Y)=—H(X|Y) + H(X),

but we also know that /(X; Y) is defined in terms of relative entropy, and
hence /(X; Y) > 0, and hence the result.

D)
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Section 2

Mutual information



Motivation

@ We created an “information” metric before, based on a single
probability, but found that entropy was a more useful idea.

@ Now lets return to trying to say something useful about information

@ The mutual information is a measure of the information that we learn
about one random variable from another.
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Mutual Information

Define: mutual information

. _ 1o p(x,y)
106Y) = 2 P oE 06

= D( x,y)\\q(x,y)
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Relationship between entropy and mutual information

We already showed that
1(X;Y)=H(X)—H(X]|Y).

@ So the mutual information is the reduction in uncertainty in X given
knowledge of Y.

o By symmetry
1(X;Y)=H(Y)— H(Y|X).

@ Also the “self-information”
I(X; X) = H(X)— H(X|X) = H(X).

which is the idea we started with, that information and uncertainty
about a random variable are really the same.
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Mutual Information Properties

@ Mutual Information is non-negative, and is zero, iff X and Y are
independent (see proof of previous theorem)

@ Mutual Information has a conditional form (see [CT91, p.22] for
details.)

e Mutual Information has a chain rule (see [CT91, p.22] for details.)
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Assignment

There are lots of practice problems in [CT91, Chapter 1], which is

available in electronic form in our Library. | recommend you have a go, but
| won't mark these.

The assignment is to calculate the entropy of Morse code symbols, given
standard frequencies of English letters.
Hints:

@ Remember Morse code really has four symbols:
» dot

dash

letter-break

word-break

v vy

@ Model the frequencies of word-breaks as well as just letters.

» you may need to make your own measurements of text — lots is
available, e.g., at http://www.gutenberg.org/
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Further reading |

and Sons, 1991.

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
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