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USA Today has come out with a new survey: Apparently three
out of four people make up 75 percent of the population.

David Letterman
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Problem

Imagine you have a fair coin, but you want to sample from an arbitrary
distribution, how would you do it?
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From [CT91, p.110-116]

Example 1

Example: use a sequence of fair coin tosses to generate a random variable
X with PMF

X =


a, with probability 1/2,
b, with probability 1/4,
c , with probability 1/4,
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General Problem

We want to generate a random varible X ∈ Ω = {1, 2, · · · ,m}
I X has PMF {p1, p2, . . . , pm}

We have a series of (independent) fair coin tosses Z1,Z2, . . .
I let T denote the number of coin tosses (which is potentially a RV)
I we’d like methods that minmise E [T ]
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Problem

How could we go about designing such a tree for a dyadic distribution
(one whose probabilities are powers of two)?

Is it related to entropy?
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Problem

What about non-dyadic probabilities?
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Obviously, we could do powers of three with ternary codes, and so on, do

lets assume that the probabilities don’t all fit some simple power-law.
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Theorem

The expected number of fair bits E [T ] required by the optimal algorithm
to generate a random variable X satisfies

H(X ) ≤ E [T ] < H(X ) + 2

Proof: see [CT91, pp.115-116]

Example 3
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Problem

What if you don’t even know if your coin is fair?
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We could have also looked into Stochastic Computing here – i.e.,

techniques for doing computation using operations stochastic processes.

Source Coding and 20 Questions
Yet another way to think about coding

20 questions:
I Want to guess a ’fact’ — say an experiment’s outcome
I Only allowed Yes/No questions
I Want to find the most efficient set of questions

Obviously, Huffman code is optimal way of generating questions if we
know the PMF
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.
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