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Part I

Sampling with Fair Coins
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USA Today has come out with a new survey: Apparently three
out of four people make up 75 percent of the population.

David Letterman
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Problem

Imagine you have a fair coin, but you want to sample from an arbitrary
distribution, how would you do it?
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Example 1

Example: use a sequence of fair coin tosses to generate a random variable
X with PMF

X =


a, with probability 1/2,
b, with probability 1/4,
c , with probability 1/4,
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Example 1

Obvious solution:
1 Toss the coin once:

1 If its a H, then X = a
2 If its a T, toss it again

1 If its a H, then X = b
2 If its a T, then X = c

X =


a, with probability 1/2,
b, with probability 1/4,
c , with probability 1/4,
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General Problem

We want to generate a random varible X ∈ Ω = {1, 2, · · · ,m}
I X has PMF {p1, p2, . . . , pm}

We have a series of (independent) fair coin tosses Z1,Z2, . . .
I let T denote the number of coin tosses (which is potentially a RV)
I we’d like methods that minmise E [T ]
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Example 1

First thing to note is that the coin tosses define a binary tree:
For example, given the solution for

X =


a, with probability 1/2,
b, with probability 1/4,
c , with probability 1/4,

H

T H

T

a

b

root

c
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So consider the tree we want to generate:

The tree should be complete: every node should be a leaf, or have
two descendents.

I i.e., at a node, we stop, or toss another coin
I probability of a leaf at depth k is 2−k

The leaves correspond to outcomes for X
I more than one leaf could be labelled with the same outcome
I the total probability of all leaves with the same outcome i should be pi

The tree could be infinite

There are multiple possible trees for some problems
I lets aim for the most efficient
I minimise the expected depth
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Problem

How could we go about designing such a tree for a dyadic distribution
(one whose probabilities are powers of two)?

Is it related to entropy?
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Solution: use the Huffman tree we get from treating it like a coding
problem.
Why?

Tree generates dyadic probabilities

Probability of leaf for code k is 2−`k where `k is the length of the
code (depth of the tree)

Earlier we showed that for dyadic probabilities the optimal code
lengths were

`k =

⌈
logD

(
1

pk

)⌉
For dyadic probabilities, this gives integer lengths.

Huffman code tree generates optimal codes

So the probabilities the Huffman code generates are the same as the
ones we need

I and the expected number of coin tosses will be minimised
I the expected number will be the entropy
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Example 2

X =


a, with probability 1/2, has code 0
b, with probability 1/4, has code 10
c , with probability 1/8, has code 110
d , with probability 1/8, has code 111

Code tree as a set of trials: 0 = H, 1 = T

H

T H

T

a

b

root

cH

T d
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Problem

What about non-dyadic probabilities?
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Solution:

Break probabilities into dyadic atoms
I Write out the probability in binary (decimal) notation
I You may need to approximate at some point

Combine back to the original probabilities by applying the same label
to the appropriate leaves.

I sum leafs with same labels
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Example 3

X =

{
a, with probability 1/3
b, with probability 2/3

Binary expansions:

2

3
= 0.101010101... = 2−1 + 2−3 + · · ·

1

3
= 0.010101010... = 2−2 + 2−4 + · · ·

So the atoms we need are

(p1, p2, . . .) =

(
1

2
,

1

4
,

1

8
,

1

16
, . . .

)
and colour indicates the label.
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Example 3

We need a Huffman code tree for the PMF

(p1, p2, . . .) =

(
1

2
,

1

4
,

1

8
,

1

16
, . . .

)

H

T H

T

a

b

root

aH

T
bH

T ......
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Problem

What if you don’t even know if your coin is fair?
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Solution: You can always get a fair p = 1/2 Bernoulli trial with a biased
coin by

1 Toss the coin twice

2 If you get two heads or two tails, repeat until you get HT or TH
3 If you get

I HT call that a head
I TH call that a tail

The two events HT and TH have equal probability, by construction.
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Source Coding and 20 Questions
Yet another way to think about coding

20 questions:
I Want to guess a ’fact’ — say an experiment’s outcome
I Only allowed Yes/No questions
I Want to find the most efficient set of questions

Obviously, Huffman code is optimal way of generating questions if we
know the PMF
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.
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