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Baseball is 90 percent mental and the other half is physical.

Yogi Berra
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Asymptotic Equipartition Property (AEP)
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Weak Law of Large Numbers

For independent, identically distributed (IID) RVs Xi , then as n→∞

1

n

n∑
i=1

Xi
p→ E [Xi ]

where convergence is in probability.
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Asymptotic Equipartition Property (AEP)

Weak Law of Large Numbers

Convergence in probability means

lim
n→∞

P
(∣∣X̄ − E [Xi ]

∣∣ > ε
)

= 0.

where X̄ = 1
n

∑n
i=1 Xi , and any ε > 0.

Strong Law of Large Numbers says the same thing, but convergence is
almost sure, i.e.,

1

n

n∑
i=1

Xi
a.s.→ E [Xi ] ,

where almost sure convergence means

P
(

lim
n→∞

X̄ = E [Xi ]
)

= 1.

A more general result is the Central Limit Theorem.

AEP

Uses the Law of Large Numbers to find an approximation for entropy
in terms we can realize from observed sequences

Flipping it around, probabilities of observed sequences of n symbols
will be close to 2−nH

I almost all events are equally surprising

Allows division of possible sequences into
I typical
I non-typical

Properties proved for typical set will be true with high probability.
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AEP formalized

Theorem (AEP)

If X1,X2, . . . are IID with PMF p(x), then

−1

n
log P(x1, x2, . . . , xn)

p→ H(X )

Proof.

Functions of independent RVs are also independent RVs, so the P(Xi ) and
log P(Xi ) are IID RVs, so

1

n
log P(x1, x2, . . . , xn) =

1

n
log

n∏
i=1

p(xi ) =
1

n

n∑
i=1

log p(xi ).

Hence, by the Weak Law of Large Numbers:

−1

n
log P(x1, x2, . . . , xn)

p→ −E [log p(X )] = H(X ).
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AEP formalized

Again, notice that it is convergence in probability. This is sometimes
called the weak AEP (similarly to the weak Law of Large Numbers).
There is an equivalent strong AEP, with almost sure convergence (as in
the Strong Law of Large Numbers).

The AEP can also be extended to deal with more general stationary,

ergodic stochastic processed, where the convergence is to the Entropy

Rate.

AEP intepretation

So in the limit

−1

n
log P(x1, x2, . . . , xn)

is close to H(X )

Or P(x1, x2, . . . , xn) is typically close to

2−nH(X )

(remembering we take logs to base 2 in the default definition of
entropy)
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Typical Sequences

Definition (typical)

The typical set A
(n)
ε with respect to the PMF p(x) is the set of sequences

(x1, x2, . . . , xn) ∈ Ωn with the property

2−n(H(X )+ε) ≤ P(x1, x2, . . . , xn) ≤ 2−n(H(X )−ε).

Properties:

1 P
(

A
(n)
ε

)
> 1− ε for sufficiently large n.

(follows directly from the AEP theorem)

2

∣∣∣A(n)
ε

∣∣∣ ≤ 2n(H(X )+ε)

Proof [CT91, Chapter 3, p.52]

3 for other properties see [CT91, Chapter 3, p.52]
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Typical Sequences

Consequences for compression

1 We can divide the set of possible sequences into

1 typical A
(n)
ε

2 atypical Ωn\A(n)
ε

2 For sufficiently long sequences, the typical set is both
1 very likely
2 relatively small, compared to all possible sequences,

if the entropy is small

3 It suggests a compression method
1 For typical sequences

1 Assign, in any order you like, a number to each sequence
2 The code is just this number, in binary, prefixed by zero

2 For atypical sequences, assign them a number too

1 Assign, in any order you like, a number to each sequence
2 The code is just this number, in binary, prefixed by one
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Consequences for compression

1 It suggests a compression method
1 For typical sequences the code is has binary length, at most

` = n(H + ε) + 1 + 1

1 There are less than 2n(H+ε) sequences, so we need numbers with
n(H + ε) bits.

2 The first +1 arise from prefixing with a zero
3 The second +1 arise because n(H + ε) might not be an integer

2 For atypical sequences the code is has binary length, at most

` = n log2 |Ω|+ 1 + 1

1 The first +1 arise from prefixing with a one
2 The second +1 arise because n log2 |Ω| might not be an integer
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Consequences for compression

Theorem (Expected Message Length)

If X1,X2, . . . are IID with PMF p(x), then for any ε′ > 0, there exists a
code which maps sequences of length n into binary strings such that the
mapping is one-to-one) and therefore invertible and

E

[
1

n
`(X1,X2, . . . ,Xn)

]
≤ H(X ) + ε′,

for n sufficiently large.
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Consequences for compression

We already basically know this, but note that the coding method

proposed above is MUCH simpler than Huffman coding. It doesn’t

require estimates of actual probabilities, just whether a sequence is

typical or not. So we can now deal with much larger blocks if we like.



Consequences for compression

Proof.

Use the coding method described above, then

E [`(x)] ≤
∑
x

p(x)`(x)

=
∑

x∈A(n)
ε

p(x)`(x) +
∑

x6∈A(n)
ε

p(x)`(x)

≤
∑

x∈A(n)
ε

p(x) [n(H + ε) + 2] +
∑

x6∈A(n)
ε

p(x) [n log |Ω|+ 2]

= P
(

A(n)
ε

)
[n(H + ε) + 2] +

(
1− P

(
A(n)
ε

))
[n log |Ω|+ 2]

≤ n(H + ε) + εn log |Ω|+ 2

Which satisfies the theorem if we take ε′ = ε+ ε log |Ω|+ 2/n, because
that can be made arbitrarily small for suitable choice of ε and n.
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Consequences for compression

Corollary

Don’t code per symbol!

The above gives us a bound on coding of H(X ) bits per symbol in the
original sequence.

Simple counter example:
I Sequence

aaaaaaaaaaaaaaaaaaaaa

I Has P(a) = 1, and H(X ) = 0.
I Best coding per symbol still needs one bit per symbol, e.g., it isn’t

close to the best coding
I Better: run-length coding

aaaaaaaaaaaaaaaaaaaaa↔ 20′a′s

So now we are considering new n-length symbols
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Section 2

Some Compression algorithms
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Some Compression algorithms

Run length encoding (RLE)

If our data has many sequences of the same symbol

record the symbols, and how long each run is, so

aaaaabbbbbaaaaaaabbbbbaaaaaaaaabbbbb

becomes
5a5b7a5b9a5b

36 symbols becomes 12
I “alphabet” may be bigger though, as now we include numbers

Compression factor depends on the data, a lot.
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Some Compression algorithms

Run length encoding (RLE)

We are starting here to see that sequences are important – not just

frequencies.



Run length encoding (RLE)
Use for instance in bitmapped images, with a limited palette:

directly encoded: 10× 13 = 130 bits
00000000000001110000011000010111110001101101000111101000111100000111101001101101010111110000011000000001110000000000

run length encoded: 38 numbers
15,3,6,2,5,1,1,5,4,2,1,2,1,1,4,4,1,1,4,4,6,4,1,1,3,2,1,2,1,1,2,1,1,5,6,2,9,3

but if we just record the numbers
I 8 bits then code = 38× 8 = 304 bits
I 4 bits (minimal) = 38× 4 = 152 bits
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Run length encoding (RLE)

Another example is fax (mostly white space, with a few black dots).

Space invader string is in column ordering.

Run length encoding (RLE)

Run length encoded: 38 numbers
15,3,6,2,5,1,1,5,4,2,1,2,1,1,4,4,1,1,4,4,6,4,1,1,3,2,1,2,1,1,2,1,1,5,6,2,9,3

but if we just record the numbers
I 8 bits then code = 38× 8 = 304 bits
I 4 bits (minimal) = 38× 4 = 152 bits

What if we Huffman encode the numbers?

H(X ) ' 2.54

So the total number of bits (assuming efficient encoding) would be

38× 2.54 ' 97 bits

which is slightly better than 130 bits for the raw file.

Compare Huffman coding of original with blocks of 5 gives about 73
bits, so we may as well just do a raw Huffman code.
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

Raymond W. Yeung, Information theory and network coding, Springer, 2010.
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