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If fighting is sure to result in victory, then you must fight,
even though the ruler forbid it;
If fighting will not result in victory, then you must not fight

even at the ruler’s bidding.
Sun Tzu, The Art of War, Chapter 10, 23
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Section 1

Horse Racing



Fixed-Odds Horse Racing

@ Pool of money betting on horses
» odds: expressed as o-for-1 or (o0 — 1)-to-1
> probability of success by probability of failure
» assume no track take, no commissions

@ What's the best strategy?

> one-off bet
» multiple ongoing bets, or parlayed bets
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Example

@ Here, only bet on horse win (not other bets like place etc.)

@ Odds are fixed by a bookie
@ We use o-for-1 convention

‘ Horse ‘ Odds ‘
1 10
2 2
3 20
4 5
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Betting Strategies

One-off bet: all in
> equivalent: maximizing arithmetic mean

Parlayed bets: Kelly criterion
> equivalent: maximizing geometric mean

What happens with all-in for parlayed bets?

Note: payout asymmetry most important

Make sure your capital survives before it can compound
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Section 2

The Kelly Criterion



Some History

@ Developed by J. L. Kelly at Bell Labs; Shannon reviewed

» Texan tough guy, gunslinger, daredevil pilot and mathematician!
@ Wirelines were used to transmit information between bookies

» application: placing bets on horses
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Formulation

@ Assume m horses, each with i.i.d. probability of winning p;
@ Assume starting capital Sp =1
e Odds: o, alternative (1 + r;), r; the rate of return
@ Play for T races
» allocate b; fraction of capital on horse i
> capital at T: Sy =[], [I"", bio;
@ Objective: assuming fully invested, choose allocation b; > 0,

>; bi =1 to maximize St
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Maximising Wealth Growth

@ Assume T — oo
» maximise E[> ", log b;o;] subject to constraints
» doubling rate: W(b,p) := """, pilog b;o;
@ Solution: the Kelly criterion, or log-optimal wealth growth
» answer: b’ = p;, proportional gambling (for fair odds)
» solve using standard KKT conditions, or log-sum inequality

o Nature of solution will depend on odds: see [CT91, Exercise 6.2]

Paul Tune (School of Mathematical Sciences, September 18, 2013 11 /20



Example Run of Kelly's Strategy

Capita
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A Simple Bet

@ Say a biased coin toss, win if heads, lose if tails
» heads with probability p, g otherwise
» each round, add $1 to bet
e Odds: o-for-1 (remember: win-lose event)
p(0+1) 1

* _ Oop—q _
o Kelly solution: b 5

» what does it mean if o = q/p7
» what does it mean when b* <0 (o < g/p)?
» what about b* > 17

@ A simple way to remember (for two events)

edge
b= —=
odds
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Simple Bet: Payoff
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Simple Bet: Under and Overbetting

@ There is no gain in overbetting: growth decreases, risk increases
@ Sweet spot: full Kelly for maximum wealth growth

@ In practice, partial Kelly more applicable, i.e. abf

» with « fraction, only a? volatility
» more robust to error in estimating returns
> lower wealth growth compared to full Kelly
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Section 3

Downsides



Caveats

Strategy is guaranteed to beat any other strategy on wealth growth

°

@ BUT Strategy is asymptotically optimal: assume playing forever

e No guarantee to win in the short term (or at all), just the best chance

@ Psychologically unsettling: imagine capital dropping 60% right before
tripling!

> partial Kelly strategies trade smoothness with growth rate

Guaranteed not to go to ruin
» BUT assumes capital infinitely divisible
» capital could be 10719 but hey, at least not bankrupt!
» can show lim7_ o, P(ST >¢€) =0, for any e > 0
@ Assumes know the probability of winning: not true in real life

» again, half Kelly strategies help: gives a safety margin
> estimation methods (e.g. maximum entropy, shrinkage)
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Criticism from Modern Finance

@ Kelly criterion assumes maximizing growth rate exponent

o Called the log-utility function in finance

@ Criticism 1: not everybody would want to maximise growth rate
exponent
» does not take into account risk-averseness (or “sleep test”)
» definition of risk in finance: volatility
» different utilities for different folks

@ Criticism 2: time horizon, as discussed, need very long term

@ Counter-argument: not many people want to do with less money
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Approximation of the Stock Market

@ Suppose m risky assets, each with random “odds” r; in one
investment period

@ One asset with return ry is deterministic

@ Assume starting capital Sp =1

@ The return vector r, with i, = E[r], ¥ = E[(r — ro1)(r — ro1) 7]

» Y is full rank
» correlations apply only “spatially”

@ Derive the optimal allocation b to optimise the wealth doubling rate
» optimise E[log(ro + b7 (r — ro1)]
@ Assume no constraints on b

@ For what return distribution is this allocation optimal?
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Further reading |

and Sons, 1991.

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
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