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Symmetric Cryptography, is so named as the keys used to encrypt and S
decrypt a message are the same.
Anyone who knows the encryption key can decrypt a message, so it must
be kept private hence its also called Private-Key Cryptography
So there are some problems:
@ Key distribution: How can two parties agree on a key?
> rely on pre-existing secure communication...
> meet in person.
> use a trusted courier.
@ Key management: a group of t parties thus requires t(t — 1)/2 keys
when each pair wishes to communicate securely.
These keys must be kept secure and regularly changed to avoid potential
security breaches.
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Idea: use keys kg and kp such that it is infeasible to calculate the one
from the other. ) )
Public-key cryptosystems can also be used to sign a message. Alice uses
The first practical public key protocol was introduced by Whitfield Diffie the private key to perform encryption (of the message) and then this
and Martin Hellman in 1976 in the form of a key exchange protocol. signature accompanies the message. Then anyone can use the public key

to decrypt the signature, and check that the message has not been

The public key, kg, can be published and anyone wishing to communicate
P ¥, KE P Y & tampered with, and that Alice is the only person who could have

with Alice just needs to find Alice’s public key from a list and encrypt the
message; only Alice will be able to decrypt the message using her
corresponding private key, kp.

constructed the signature because she is the only one to know the private
key.

This concept solves the problem of securely distributing keys. What's
more, in a network of t people, only t keys are needed, a huge
improvement on the situation using symmetric cryptography.
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Public-Key Cryptography Requirements and Assumptios

@ The encryption function ey, : P — C should

> be easy to compute y = e, (x)
» should be 1-1 and must have an inverse (to decrypt) dk, : C — P

@ we assume Eve knows the function e, and the encryption key kg,
and can evesdrop to learn y.

> It must be computationally infeasible to calculate kp from kg and y
» It must be computationally infeasible to calculate dj, without kp

A function e, is known as a “trap-door one-way function”.
@ “One-way” means it is difficult to invert.

@ “Trap-door” means that the inverse can be found if one knows some
additional information (the key k).
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l—Public-Key Cryptography Requirements and Assumptios

The RSA Cryptosystem

@ Developed by Rivest, Shamir and Adelman, published in 1977.
» Clifford Cocks, an English mathematician, had developed an equivalent
system in 1973 at GCHQ, but it wasn't declassified until 1997
o Key Generation: Alice chooses two large primes (usually of
approximately the same size) p and g and then

na=p-q

> Alice then chooses an encryption key e such that
ged(en, 9(na)) = ged(en, (p— 1) - (9 — 1)) = 1.

» the public information is the pair ke = (ea, na).

» the coprime condition ensures that ea has an inverse da modulo ¢(na),
and kD = dA.

» to find ds we need to factor na
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Euler’s totient function ¢(n) counts the number of positive integers less
than n that are relatively prime to n. So for instance, for a prime p

P(p)=p—1

The totient function has useful properties, e.g., it is multiplicative, i.e.,
for coprime numbers m and n

¢(mn) = ¢(m)e(n)
One way to write the function is in terms of the prime factors p; of n,
e.g.,

o = oI )

e.g.,$(36) = $(2°3?)
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RSA

The message and ciphertext spaces, M and C, are the integers modulo nga
Encryption

To encrypt a message x to send to Alice, Bob uses the public key

ke = (ea, na) to compute

y = ek (x) =x* mod ny

Decryption
When Alice receives y she computes

x =di,(y) = ydn = xeada — I+l — 5 mod nu

by the Euler-Fermat theorem.
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The RSA decryption method uses the Euler-Fermat theorem:

Theorem (Euler-Fermat)

For positive, coprime integers x and m,
x?(M =1 mod m.

where ¢(m) is Euler’s totient function.
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Anyone can encrypt a message to send to Alice as (na, ea) is public
knowledge.

Only Alice knows d4, so only Alice can decrypt the message.

The security of RSA is based on the belief that e, (x) = x? (mod n) is a
trapdoor one way function.

An opponent can find Alice’s public key (ea, na), but as they do not know
p and g, they cannot easily find da such that

eada=1 mod (p—1)(g—1)
this requires factorising np4.

There most efficient (known) algorithm for factorising large numbers, the
number field sieve, runs in subexponential time.
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There is still a key distribution problem, but it is slightly different. If
Alice and Bob never meet, then how does Bob know that the public key
listed for Alice, really belongs to Alice?




RSA Encryption

Suppose that Alice wishes to send a message to Bob. She first converts
the message to numerical form.

A B C D E F G H I J K L M
00 01 02 03 04 05 06 07 08 09 10 11 12

N O P Q R S T U V W X Y Z space
13 14 15 16 17 18 19 20 21 22 23 24 25 26

Note: we encipher spaces as well as letters, and we represent each letter
by a two digit string.
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RSA Encryption

s 0 send 3 message to Bob. She first converts
the messa form.

A EF Ho1lJ kLM
00 01 02 03 04 05 06 07 08 09 10 11 12

N OP QRS TUVWXY Z spce
13 14 15 16 17 18 19 20 21 22 23 24 25 26

Note: e encipher spaces as wel as letters, and we represent each leter
by a two digit strng

We need each plaintext string to be in Z, (and each ciphertext string will
be in Z,). We use the following systematic method to divide the message
into blocks that we can encipher:

@ Suppose that n has d digits. Then the digits of the plaintext message
are divided into blocks xq, xo, ..., x, such that each block has size
d — 1 digits (with Os added to the last block, if necessary, to ensure
that it has d — 1 digits).

@ The ciphertext consists of k integers yi1, y», ..., yk, each computed
by:

yi=x7 (mod n).

As we are working modulo n, each ciphertext y; is in Z,, that is, it
satisfies 0 < y; < n.

@ The ciphertext is sent to Bob through any communication channel.
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The RSA cryptosystem is considered computationally secure: the best Public and Private Key Cryptography

known algorithm for breaking it involves solving the integer factorisation
problem.

2013-10-29

To find x1, x2, ..., Xk given y1, y2, ..., Yk, with y; = xf (mod n):
compute d. Since e is public knowledge this requires computing e~!

mod ¢(n). To find ¢(n) we need to know the factorisation of n.

This is computationally infeasible to factor (within a given time frame),
given current known techniques.

@ There are no proofs that integer factorization is computationally
difficult.

@ There are no proofs that the RSA problem is equally difficult.
The best known method for breaking RSA is to factor a large number =

RSA problem is at most as hard as factoring (it may be easier using a yet
unpublished method).

Matthew Roughan (School of Mathematical § October 29, 2013 13 /37

Basic Framework

Information Theory

Basic Framework L ofie crvel B Key Cryptography

L Basic Framework

2013-10-29

@ Obviously, encrypting is a lot like coding
@ Ciphers
> have a key k € K from keyspace K
convert plaintext message x € M into ciphertext y € C
encryption: y = ec(x)
decryption: x = dk(y)
in some cases, a different (but related) key is used for encryption and
decryption (e.g., public key encryption)

vV YyVvyy

@ Different attack models:

» Assume attacker has the ciphertext and plaintext, and just needs key
» Assume attacker only has ciphertext

Matthew Roughan (School of Mathematical § October 29, 2013 14 / 37




Section 2

Modern Notion of Security
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Modern Notion of Security

Computational Security

A cryptosystem is computationally secure if the best algorithm for breaking
it involves at least N operations (for some specified very large number N).

No known practical cryptosystem can be proved to be secure under this
definition.

In practice, we say a cryptosystem is computationally secure if the best
known algorithm to break it requires an unreasonably large amount of
computer time.

Often breaking a cryptosystem requires solving a one-way mathematical
problem: easy to compute in one direction, computationally infeasible to
reverse.
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Computational Security

cure if the best algoithm for breaking
some specifed very large number )




Example: RSA

The RSA cryptosystem is considered computationally secure because the
best known algorithm for breaking it involves solving the integer
factorisation problem: It is easy to multiply numbers together but given a
large composite number it is computationally infeasible to factor it (within
a given time frame), given current known techniques.

@ There are no proofs that integer factorization is computationally
difficult.

@ There are no proofs that the RSA problem is difficult.
The best known method for breaking RSA is to factor a large number =

RSA problem is at least as easy as factoring (it may be easier using a yet
unpublished method).
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L Example: RSA
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Other Forms of Security

@ computational security says that no known algorithm can break the
security (with practical resources)

> this is typical today

@ unconditional security says that the encryption security doesn't
depend on unproven assumptions

> e.g., our belief that integer factorisations is hard

@ perfect or information theoretic security says it cannot be broken,
even with infinite computational resources.

We develop now the theory of cryptosystems that are information
theoretically secure against ciphertext only attack (that is, we assume that
an opponent knows the cryptosystem used and has access to some
ciphertext).
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Sometimes a subtle distinction is made between information theoretic
and perfect security in that the former may allow some leakage of
information, but still maintains its security, but this subtelty depends on
the type of secret sharing we are doing, and the attack.

RSA is only computationally secure. We might one-day prove it is
unconditionally secure, but it will never be informational theoretically
secure, because with infinite computing power we can always solve the
factorisation problem.




Assumptions on the Cryptosystem

To study unconditional security of a cryptosystem, we make the following
assumptions about our cryptosystem and its operation.
Al Each key is used for at most one encryption.
A2 The probability distribution on the message space M is pag
A3 The probability distribution on the keyspace K is px.
A4 The key and the plaintext are chosen independently.
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So pa(x) is the probability that x is the message.

Alice and Bob choose the key according to this distribution: the
probability that the key k is chosen is pi(k).

The probability distributions on M and K induce a probability distribution
on the ciphertext C:

For k € IC, define
C(k) ={ex(x) | xe M}.

So C(k) C C is the set of all possible ciphertexts that can be obtained by
using the key k.

Then for ally € C,

pe(y) = Y pr(k)prmldi(y)).

{klyeC(k) }
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Then forally € C,

)= 30 prelKpulck(y)
=




Now, for each y € C, x € M, we can calculate pc(y|x), the probability
that y is the ciphertext given that x was the plaintext:

pey) = D> px(k):

{klx=dx(y) }

So by Bayes' Theorem, we can also find paq(x|y):

pe(y[x)pa(x)
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So by Bayes' Theorem, we can also find pu (xly):

putey) - L)

Definition (Perfect Secrecy)
A cryptosystem has perfect secrecy if for all x € M,y € C,

pm(x[y) = pr(x).

That is, knowledge of the ciphertext y does not give any information
above the plaintext x it came from.

Note: from Bayes' Theorem, a cryptosystem has perfect secrecy if
pc(y|x) = pe(y) forall x e M, y € C.

We make a fifth assumption about our cryptosystem, namely that each

ciphertext occurs with non-zero probability (if this is not true, we can
remove any ciphertext y with pe(y) = 0 from C).

A5 ForeachyeC, pe(y) #0.

Matthew Roughan (School of Mathematical § October 29, 2013

22 /37

2013-10-29

Information Theory
I—Modern Notion of Security
I—Perfect Secrecy

iy (1
remove any cphertect y with p(y) = O from C).

A5 Foreschy € C. u(y) £0.




Example

Suppose that the 26 keys in the Shift Cipher are used with equal
probability 1/26. Then for any plaintext probability distribution, the Shift
Cipher has perfect secrecy.

Note: Recall that by the assumption Al, each key is used for the
encryption of only one letter, then another key is chosen.
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Recall that for the shift cipher, M =C = K = Zog, ex(x) = x + k
(mod 26) and dik(y) =y — k (mod 26). Now

pelr) = 3 pc(Kpaa(dh(y) = o 3 paaly = k) = 5

26
kEZne kEZop

Now for x € M, y € C, there exists a unique key k € IC such that
ex(x) =y, namely k = y — x (mod 26). Hence

pelyl) = pily = x) = pe(k) = 55
Thus )
pa(xly) = pe(y|x)pr(x) _ %P/;A(X) = pu(x)

pe(y) 26

Hence we have perfect secrecy. Thus the shift cipher is unbreakable
provided a new (random) key k is chosen to encrypt each plaintext letter.

Example 2

Suppose that M = {A, B}, C ={a,b,c,d}, K = {ki, ko, k3} and that

1 3
A) = — B) = —
pr(A) 2 prm(B) 2
1 1 1
prc (ki) 5 px(k2) 7 px(k3) 2

Further, suppose that the encryption functions e, are given by the table

We need to calculate pe(y) and paq(x|y) for each x € M and y € C.
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Example 2

3
pc(a) = Z p}c(ki)PM(dk,-(a))
i=1

— pelk)pm(A)

_ 11
2 4
_ 1
8
7
p) = —
pc(b) 16
1
PC(C):Z
3
Pc(d)—r6
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Now
pc(alA) = Pic(kldi(a) = A) = p(ki) =
e (alA)pa(A) _ 33
pu(Ala) = apc(zj)w 72%
Similarly
1
pm(Alb) = 7
pm(Alc) = %
pm(Ald) = 0

And prm(Bla) =0, pm(BIb) =2, pm(Blc) = 3, pm(Bld) =1

October 29, 2013
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pe(b) = > pe(K)pa(di(b))
{k|ke{ki,k2}}
= pr(ki)pm(B) + pr(k2)pr(A)
13,11 7
T 2444 16
pe(c) = pr(k)pm(B) + pc(ks)prm(A)
13,11 1
T 1173373
pc(d) = prx(ks)prm(B)
133
T 4416
Information Theory l::mv‘e?
gl: I—Modern Notion of Security o "‘“"’:"’M‘):M:ﬂ“i
S. L perfect Secrecy s L e
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And pad(BJa) = 0. paclBIb) = §. puulBle) = 3. pru(Bld) =1
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Note now that
pm(Alc) = pm(A)
pm(Blc) = pm(B)
so knowing that the ciphertext is ¢ doesn't give any information about
which plaintext was used.
However, this is not true for the other ciphertext values. So the
cryptosystem does not have perfect secrecy.
Information Theory B
Perfect Secunty Lemma %I‘ I—Modern Notion of Security T e
S. I—Perfect Secrecy
2 L-Perfect Security Lemma
N

Lemma (Perfect Security)
For perfect secrecy we must have |[K| > |C| > | M|.

That is, the size of the keyspace must be at least as large as the size of
the set of all possible ciphertexts (which must in turn be at least as large
as the space of possible messages).
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Proof. N
For any plaintext string x € M perfect secrecy means we have
pe(y[x) = pe(y)
for ally € C.
By the 5th assumption above, p¢(y|x) > 0 for all y € C. This says that for
each y € C, there is at least one key k € K such that ex(x) =y.
These keys must be distinct for different y, thus the number of keys is at
least the number of ciphertexts, that is || > |C].
Further, as e, : M — C is an injection (that is, it is one to one), we have
that |C| > |M|. O
. Information Theory e Sy e
Perfect Security Theorem & L—Modern Notion of Security
S. I—Perfect Secrecy
g I—Perfect Security Theorem
N

Theorem
Let (M,C,K,E,D) be a cryptosystem with |K| = |C| = |[M]|. The
cryptosystem has perfect secrecy if and only if

Q every key is used with equal probability ﬁ

@ for allx € M,y € C there is a unique k € K with y = ex(x).

Essentially, this says the one-time pad (or equivalents) are the only way to
get perfect secrecy.
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Proof. 3 LPerf(—.\ct Secrecy .
— Perfect Security Theorem
(=) Suppose that the cryptosystem has perfect secrecy. &
2: As in the proof of Lemma for perfect secrecy, for any x € M, y € C,
there exists a key k € IC such that ex(x) =y. Now, as || = |C|, the key
k must be unique.
1: Let |K| = n (so we also have [M| = n=|C|) and let K = {ki,..., kn}
and M = {xq,...,Xp}. Fix a ciphertext y € C. By 2, there is a unique key
that maps x; to y, and these keys must all be different, so we can relabel
the keys so that e (x;) =y, i=1,...,n. Now
_pe(yxi)pm(xi)  prc(ki)paa(x;)
pm(xily) = =
pe(y) pe(y)
and we also have that pa(xily) = pm(x;) for i =1,...,n as the
cryptosystem has perfect secrecy. Hence pxc (ki) = pe(y) fori=1,...,n.
Hence the keys are used with equal probability, namely pc(y). Now as
K| = n, we must have pic(kj) =1 fori=1,....n. O
Qv 20,208 31/
Information Theory e Sy e
Perfect Security Theorem & L-Modern Notion of Security
S. I—Perfect Secrecy W T e
g Perfect Security Theorem -
N

Proof.

(«<=) Exercise: Suppose that 1 and 2 hold for a cryptosystem
(P,C,K,E,D) with |IC| = |C| = |P|, and deduce that the cryptosystem
has perfect secrecy (that is, show that pa(x]y) = pa(x) for all
xeM,yeC.
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The One-Time Pad

One well known realization of perfect secrecy is the one-time pad. This
was first described by Gilbert Vernam in 1917 for use in the encryption of
telegraph messages. It was proved unbreakable by Shannon over 30 years
later.

Let n > 1. We put
M=C=K=(Z)"={(a1,...,an) | ai €Zs}.

For k € IC, define
e(x) = x+ k,

the vector sum modulo 2 and

d(y) =y+k (mod2).

Example: x = (1,1,0,0,0,1,1), k = (0,1,1,1,0,1,0), then
y=x+k=(1,0,1,1,0,0,1).

October 29, 2013 33 /37

2013-10-29

Information Theory
I—The One-Time Pad

Let 0> 1. We put

M=C=K = (Z) = { (... | 31 € 22,

L-The One-Time Pad e

the vector sum modulo 2 and

dly)=y+k (mod 2).

Example: x = (1,1,0,0,0,1,1), k= (0,1,1,1,0,1,0), then
y=x+k=(L0,1,1,0,01)

If the key k is chosen randomly (and only used once), then by the theorem
of perfect secrecy, the one-time pad gives perfect secrecy.

The major disadvantage to the commercial use of a one-time pad is the
difficulty of sharing the key. It has to be as large as the plaintext, and
cannot be reused as that compromises the security. It has been used in
military and diplomatic applications where security may be vital.
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We need to keep one-time pads distinct from book ciphers: that is,
ciphers that use a large-key in the form of some part of a (standard)
book as the cipher.

e e.g., replace words/letters in the plaintext with locations words/letters fron
in the book

e e.g., (2nd Beale cipher)

These may (effectively) use each key only once, but the distribution of
keys isn't uniform.

I




Information-Theoretic interpretation of Information
Theoretic Security

e perfect secrecy if for all x € M, y € C, we have pr(x]y) = pm(x).
@ theorem: if |IC| = |C| = | M| the cryptosystem has perfect secrecy if
and only if
@ every key is used with equal probability |%|;
@ for all x e M, y € C there is a unique k € K with y = ex(x).
@ Al Each key is used for at most one encryption.

@ A4 The key and the plaintext are chosen independently

Together these various properties and assumptions mean that
o the keys are IID uniform

@ unique key to map y = ex(x) means that the cipher text must be 11D
uniform as well

So the output of perfect encryption will be 11D uniform.
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Makes sense, as otherwise there would be some pattern or correlation in
the data, and hence some lever to start decoding.

In general, even when you don't have perfect security, you would like to
get as close to this property as possible.

Obviously, this means that compressing an encrypted signal is pointless —
so compression must preceed encryption. However, that isn't guaranteed
by the OSI layered structure. More importantly, you would really like to
encypt a signal as early as possible, so there is as little trace of it on any
part of a system (many “hacks” work by pulling bits of data out of the
signal parth before encryption).

Other Examples

@ Perfect, or information-theoretic security can’t be broken even if the
hypothetical adversay has infinite computing power

» not vulnerable to future developments in computing or mathematics
@ But perfect security is impractical for many problems
> one-time pads are awkward at best

@ There are other algorithms, in other “secret sharing” problems which
have perfect security, that are more practical
> e.g., Shamir's secret sharing
> private information retrieval
» quantum cryptography (?)
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@ Claude Shannon, Communication theory of secrecy systems, Bell System Technical
Journal 28 (1949), no. 4, 656-715,
netlab.cs.ucla.edu/wiki/files/shannon1949.pdf.
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