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Section 1

Big-O Notation (and its friends)
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Computational complexity

Often, we don’t care about the time for a particular problem, we care
about the practical bounds for problems we might consider in the
future

We would like to estimate how long our program will take to run
I as a function of the size of the problem

F e.g., n equals the number of variables
F e.g., m equals the number of constraints

I could also include the size of the variables in memory
F e.g., k bit floating point numbers

often interested in BIG problems, so look at asymptotic behaviour
I e.g., large m and n
I use big-O notation
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Big-O notation

Definition

f (x) = O
(
g(x)

)
means (i.e., iff) there exists constant c and x0 such that

|f (x)| ≤ c |g(x)|

for all x such that xi ≥ x0.

Usage:

describes asymptotic limiting behaviour: implicit that x →∞
the function g(x) is chosen to be as simple as possible

a common mistake is to think that it means f (x)/g(x)→ k
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Big-O notation properties

Multiplication: f1 = O(g1) and f2 = O(g2) then

f1 × f2 = O(g1 × g2)

Multiplication by a constant: f = O(g)

kf = O(g)

Summation: f1 = O(g1) and f2 = O(g2) then we can write a general
expression, but usually either g1 = g2, or WLOG g1 grows faster than
g2 and in these cases

f1 + f2 = O(g1)

These properties mean that we can simplify using a simple set of rules
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Big-O notation rules

When we use Big-O notation, we use the following rules:

1 if f (x) is a sum drop everything except the term with the largest
growth rate

2 if f (x) is a product any constants are ignored

Assume these rules have been applied, when you see Big-O.
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Example of RULE-1

Example

f (x) = x7 − 200x4 + 10 is dominated (for large x) by the x7 term, so

f (x) = O
(
x7
)

We dropped the terms −200x4 + 10 because they grow slower than x7.

Example

We can reduce O(n2 + log n) to O(n2).

The log(·) function grows more slowly than n (or any polynomial).
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Example of RULE-2

Example

f (n) = 3n2, which is a product, so we ignore constants, and

f (n) = O
(
n2
)

We ignored the constant 3.

Example

If k is a constant, we can rewrite O(kn log n) as O(n log n).

Whether k is a constant depends on the context.
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Stirling’s approximation

Stirling’s approximation is both an example of use of the notation, and
also a useful tool in some analysis:

ln n! = n ln n − n + O(ln n)
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We use Big-O notation here

We will use Big-O notation to count operations in an algorithm
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Classic examples

problem complexity notes∑n
i=1 xi O(n)

A× B O(n3) näıve algorithm

O(n2.373) clever algorithm

A−1 O(n3) näıve algorithm

O(n2.373) clever algorithm

det(A) O(n!) näıve algorithm

O(n3) clever algorithm

Where A and B are n × n matrices

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI March 7, 2024 11 / 39



Example of a more complicated function

Example

Calculate the complexity of computing f (x) = exp(x).

This depends on how you compute exp(x).

A simple approach is Taylor series
I assume you want n digits of precision
I that determines how many terms you need in the Taylor series
I so computation is O(nM(n)), where M(n) is the cost of a

multiplication with n digits

Assuming fixed precision (e.g., in Matlab, double precision)

exp(x) = O(1)

That is, its computational time doesn’t depend on how big x is

There are faster approaches, but this suffices for today

Other elementary functions, e.g., sin, cos, arctan, log, are similar
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Nomenclature

In order, we describe classes of algorithms as ???-time (e.g., constant-time)

complexity name example algorithms

O(1) constant calculate simple functions

O(log n) logarithmic binary search

O(n) linear adding arrays of length n

O(n log n) log linear Fast Fourier Transform (FFT)

O(n2) quadratic adding up all elements of a matrix

O(nd) polynomial näıve matrix multiplication

O(cn) exponential Simplex

O(n!) factorial brute force search for TSP
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Weirdness

Example

x = O(x2) but x2 6= O(x)

so using = is slightly weird, as there is an asymmetry.
Sometimes we use ∈ instead.
e.g.,

x ∈ O(x2)
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Often the symbols are used more generally

Sometimes we use these symbols in a type of algebra

Example (
n + O(n1/2)

)(
n + O(log n)

)2
= n3 + O(n5/2)

Meaning: for any functions which satisfy each O(...) on the LHS, there are
some functions satisfying each O(...) on the RHS, such that substituting
all these functions into the equation makes the two sides equal.
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Variables

It can get confusing, as variables and constants sometimes are inferred
from context.

For instance

f (n) = O(nm)

g(m) = O(nm)

mean quite different things, even though the RHSs are the same.
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Big-O limitations

Big-O has advantages:

it gets to the nub of the question – what is the shape of the
performance of our algorithm for large problems

However it has limitations

it doesn’t tell us about constants, and lower-order terms
I these are important, particular for small to moderate sized problems
I Big-O is only for asymptotic performance

it doesn’t tell us actual computation times

it’s only an upper bound
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Big-Ω

Two forms of Big-Omega notation

Hardy-Littlewood (used in math)

Knuth (used in computational complexity)

Definition (Big Omega)

f (x) = Ω
(
g(x)

)
⇔ g(x) = O

(
f (x)

)
More succinctly: f (x) ≥ kg(x) for some k

Similar to Big-O, but gives a lower bound
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Big Theta

Definition (Big Theta)

f (x) = Θ
(
g(x)

)
means that f (·) is bounded above and below by g(·), i.e.,

k1g(x) ≤ f (x) ≤ k2g(x)

for positive constants k1 and k2, for all x > x0.

So Big-Θ notation means the function f (x) grows as fast as g(x).
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Section 2

Bayesian Networks
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Graphs and Stats

Statistics can be used to
I analyse graphs/networks
I estimate/infer graph properties
I determine ways to sample from graphs

Graphs can be useful in statistics
I graphical structure can be used in models
I e.g., Bayesian networks
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Multinomial Bayesian Network Example [SD15]

We want to model the relationships between a set of variables

Abb. Variable Values Type

A Age { young, adult, old } demographic
S Sex { M, F } demographic
E Education { high-school, uni } socioeconomic
O Occupation { self-employed, employee } socioeconomic
R Residence { small, large } socioeconomic
T Travel mode { car, train, other } target variable
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Goals

We could simply consider all possible associations but there is a large
number of states, and hence parameters we would have to estimate. We
want a way to simplify it.

Tasks of interest

1 Queries: given a set of relationships, derive the probability that a
given person (of Age A, Sex S, ...) will they use a car to get to work,
or given they drove, what are the probabilities of the other variables?

2 Estimation: given we are told which variables are directly related, find
out the details of the relationships.

3 Identification: work out which variables are directly related.
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Multinomial Bayesian Network Example [SD15]

Assume (for the moment) that we know the relationships between
variables, the direct relationships can be shown as a DAG (a Directed
Acyclic Graph), e.g.,

SA

E

R O

T

Called a Bayesian Network or a Graphical Model
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DAG notation

Definition

Given a link or arc (i , j) in a DAG, the node i is called the parent of j , and
the node j is called a child of i .

Parents and children only make proper sense when there are no cycles,
otherwise, node A could be the parent of B, who is the parent of C, who is
the parent of A, which isn’t what I mean by parents.
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Conditional Probability

Each node/variable is associated with a conditional probability of the
node’s variable, conditional on its parents

e.g., Node R is associated with P(R|E )

For categorical variables, it can be expressed in a table, e.g.,

E(ducation) Pr{R=small} Pr{R=large}
high-school 0.4 0.6

uni. 0.7 0.3
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Multinomial Bayesian Network Example [SD15]

A link means the variables are directly related, i.e., that they are
dependent, so we might say E depends on A

There is an indirect relationship where-ever we can follow a path, e.g.,
from A to T

Absence of a link means the variables are conditionally independent,
e.g., there is no link from E → T

I This says that T and E are conditionally independent, given R and O
(the nodes on the path between them), i.e.,

Pr(T ,E |O,R) = Pr(T |O,R)Pr(E |O,R)

Further, as the arrows point from E to O and R, we say E doesn’t
depend on these variables, and so can reduce this further to

Pr(T ,E |O,R) = Pr(T |O,R)Pr(E )
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Multinomial Bayesian Network Example [SD15]
Given this representation

SA

E

R O

T

We can write

Pr(A, S ,E ,O,R,T ) = Pr(A)Pr(S)Pr(E |A,S)Pr(O|E )Pr(R|E )Pr(T |O,R)
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Generally

Nodes represent random variables

Links represent dependence

Can decompose joint probability distributions into a product of
conditional probabilities of the form

Pr(X1,X2, . . . ,Xn) =
n∏

i=1

Pr
(
Xi |parents(Xi )

)
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Multinomial Bayesian Network Example [SD15]

Pr(A, S ,E ,O,R,T ) = Pr(A)Pr(S)Pr(E |A,S)Pr(O|E )Pr(R|E )Pr(T |O,R)

This is a useful factorisation
I reduces the number of parameters to model or estimate

F estimation decomposed into small problems, e.g., estimate Pr(O|E)

I reduces calculations (not so hard here, but imagine a bigger example)
I defines a nested set of models

But where did I get the DAG in the first place?
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Identifying DAG structure

Two main approaches

link-by-link: consider each link separately
I test for conditional independence between each pair of variables
I but lots of tests, and conditions depend on other links
I best for verifying an existing model

F test if we should add or remove a link
F e.g., should there be a link E → T?

network-wide: given each network a “score”, and choose the highest
score

I scores based purely on likelihood will prefer networks with lots of links
I so use BIC (Bayesian Information Criteria)
I but there are very many networks, so can’t hope to score them all
I lots of tricks and techniques
I apparently can solve networks with ∼ 100 nodes
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A Real Example [SPP+05]

Extra-cellular cues trigger a cascade of reactions
I signalling molecules are activated
I affect subsequent molecules
I results in phenotype cellular response

We would like to map these signalling pathways

Traditional approach relies on diverse experiments, intuition, and lots
of work

I but can’t consider pathways independently
I cross-talk, and other complexities

Intracellular multicolour flow cytometry provides a window into
multiple signalling molecules.

I simultaneous measures of protein expression levels
I large sample sets
I need a way to analyse the data

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI March 7, 2024 32 / 39



A Real Example [SPP+05]
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Limitations

This is a pretty small network

Direction is not always meaningful
I it implies a relationship
I not necessarily causal

Couldn’t find all paths
I Bayesian networks are inherently acyclic
I Cell signalling pathways are not

They had the advantage that this network was known before hand. Would
I trust it if I didn’t?
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Reasoning with Bayesian Networks

Top-down: causal reasoning
I start with fixed state, or probabilities at the top
I work out posterior probabilities of targets

Bottom-up: explanatory or diagnostic reasoning
I start with a state at the bottom, e.g., catch the train
I work out the likely cause

Used to build expert systems.
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Weirdness in diagnostic reasoning

hardware
failure

software
failure

computer
failure

Two causes “compete” to explain the failure
I the two causes are independent, but
I causes become conditionally dependent given common child
I e.g., if the computer has failed, and we know the hardware has failed,

then the posterior probability of a simultaneous software failure goes
down

Call “explaining away”

Its an example of Berkson’s paradox
I classic example: you are admitted to college for being “brainy” or

“sporty”
I one of these alone explains you being in the college
I so the other becomes less likely
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Other Graphical Models

Bayesian Networks are one member of the class of Graphical Models

Models that are represented by a graph/network

e.g., special cases of BNs
I Hidden Markov Models
I Neural Networks

e.g., generalisations
I Markov Random Fields (undirected edges)
I dynamic BNs
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Examples/Applications

AT&T system to use customer data to work out which customers are
likely to default on their bill

I lots of other fraud detection, e.g., credit cards

Speech recognition

Gene regulatory networks

Image processing

Sports betting
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Further reading I

Marco Scutari and Jean-Baptiste Denis, Bayesian networks with examples in R,
CRC Press, 2015.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P.
Nolan, Causal protein-signaling networks derived from multiparameter single-cell
data, Science 308 (2005), no. 5721, 523–529.
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