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Section 1

Graph features/metrics
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Graph Notation

The network is defined by the graph,

G (N,E )

We will assume (unless stated) that it is undirected.

By default label the nodes {1, 2, . . . , n}

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI March 7, 2024 3 / 29



Graph Features/Metrics

There are two type of metrics/features

Local (to the nodes)
I node degree
I local clustering coefficient
I centrality (various versions)
I eccentricity

Local (to a pair of nodes)
I (shortest path) distance

Global (for the whole network)
I average node degree and degree distribution
I radius, average distance and diameter
I global clustering coefficient
I assortativity/homophily
I graph spectrum

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI March 7, 2024 4 / 29



Section 2

Distance
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Distance metrics

A distance metric d(·, ·) is function of pairs of elements x , y of a set S to
the non-negative real numbers, such that

d : S × S → [0,∞),

has the properties
1 non-negativity: d(x , y) ≥ 0
2 identity: d(x , y) = 0 ⇔ x = y
3 symmetry: d(x , y) = d(y , x)
4 triangle inequality: d(x , z) ≤ d(x , y) + d(y , z)

On a graph, we would like a distance metric on the set of nodes N,
i.e., dij for all i , j ∈ N.
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Distances in graphs

There are many possible distance metrics on a typical graph

Most are linked to the idea of the “shortest” path
I provide a distance for each edge
I distance between two nodes is the sum of the distances of the edges on

the shortest path
I also known as geodesic distance
I we might say the distance between unconnected nodes is ∞

e.g.,
I “hop” distance
I physical links have a distance
I we will talk in general of “weighted” links, where the weights give

distances

can be generalised (a lot)
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Erdős numbers

If you wrote a paper with Erdős, your number is 1. If you wrote a paper
with a direct co-author, your number is two, and so on. Essentially it is
the graph distance you are from Erdős in a co-authorship graph.

So Erdős number is your “hop” count distance from Erdős is the
co-collaborator graph.

http://en.wikipedia.org/wiki/Erdos_number

My Erdős number is 4 (through Charles Pearce, Gavin Brown, and Robert
Tijdeman.)

http://www.ams.org/mathscinet/collaborationDistance.html
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Metrics associated with distance: average

Distance is a metric associated with each pair of nodes, so there are
O(|N|2) distances. We usually want to reduce this to a smaller set of
measurements

I most of these assume the graph is connected

An obvious metric is the average distance

dG =

∑
i ,j∈N dij

n(n − 1)
.
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Metrics associated with distance: eccentricity ...

Definition

The eccentricity ε(i) of a vertex i is the greatest distance between i and
any other vertex.

ε(i) = max
j

dij .

the radius of a graph is the minimum eccentricity of any vertex

radius
(
G (N,E )

)
= min

i∈N
ε(i) = min

i
max

j
dij .

the diameter of a graph is the maximum eccentricity of any vertex

diameter
(
G (N,E )

)
= max

i∈N
ε(i) = max

i
max

j
dij

which is the maximum distance between any pair of nodes.

a peripheral vertex is one whose eccentricity achieves the diameter.

a central vertex is one whose eccentricity achieves the radius
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Issues

Often distance is implicitly a hop count
I this isn’t too interesting to me
I real networks usually have more meaningful distances

Distance in directed graphs is not symmetric, so it isn’t a formal
distance metric

I quasi-metrics are like distance metrics, but give up on symmetry

In order to calculate distances, we need to calculate shortest paths,
which you might not know how to do yet (but we will learn later).
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Section 3

Centrality
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Centrality

We already saw one definition of a “central” node
I based on distances
I there are actually multiple competing definitions

Centrality is associated with importance,
I e.g., most influential person in a social network or organisation
I e.g., most important person (or thing) in a movie (the MacGuffin)
I e.g., a “central” point of failure in a computer network
I e.g., “super-spreaders” of disease
I e.g., potential bottlenecks in transport networks
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Network of Thrones

Who is the most important character in Game of Thrones?

http://www.npr.org/2016/04/16/474396452/

how-math-determines-the-game-of-thrones-protagonist
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Metric 4: centrality
Different measures

I Degree centrality
F the normalized degree of nodes
F interpretation — how likely to catch a disease
F extension to a metric on a graph (maximized by star)

I Closeness centrality
F reciprocal of mean geodesic distance between x and other nodes

c(x) =
1∑

y d(y , x)

I Harmonic centrality
F mean of reciprocal of geodesic distance between x and other nodes

c(x) =
∑
y 6=x

1

d(y , x)

I Betweenness centrality
F normalized measure of how many shortest-paths a vertex appears on

I Eigenvector centrality ∼ Google’s PageRank
I Others: information centrality, cross-clique centrality, percolation

centrality, ...
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Betweenness centrality

Quantifies the number of times the node provides “connective tissue”
of the graph

Calculation
1 Calculate all the shortest paths in the network
2 Calculate

σst = number of shortest paths from s to t

σst(x) = number of shortest paths from s to t through x

3

cB(x) =
1

K

∑
s 6=t 6=x

σst(x)

σst
.

where K is total number of possible pairs of vertices not involving x ,
e.g., in undirected graphs K = (n − 1)(n − 2)/2.
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Section 4

Clustering
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Clustering

A key idea is that in many networks we have smaller groups of
“clusters”

I highly connected subnets (e.g., almost cliques)

For instance, in social networks
I a friend’s friends are more likely to also be my friends

Clustering metrics assess to which degree a particular network has
this property

I they can be local
I or global
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Global clustering coefficient

Clustering coefficient is a global measure of whether nodes tend to
cluster

C = 3t1/t2,

where

t1 = number of triangles

t2 = number of connected triples or “triplets”

a

b

c
a

b

c
connected triple triangle

We take 3t1 because each triangle is made up of 3 triplets

it encodes the idea that in a clustered network it is more likely that a
friends’ friends are also my friends
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Local clustering coefficient

Local measure of how close a node and its neigbours are to being a
clique

ci =

∣∣∣{(j , k) ∈ E | j , k ∈ Ni}
∣∣∣

ki (ki − 1)/2
,

where Ni is the neigbourhood of i , and ki = |Ni |.
ci counts the fraction of links in the local neighbourhood, as
compared with a clique which has ki (ki − 1)/2

We can compute a network average clustering co-efficient using

C̄ =
1

n

n∑
i=1

ci .
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Local clustering coefficient

i

ki = |Ni | = 4∣∣∣{(j , k) ∈ E | j , k ∈ Ni}
∣∣∣ = 2

ci =
1

3
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Local clustering coefficient

i

Ni

ki = |Ni | = 4

∣∣∣{(j , k) ∈ E | j , k ∈ Ni}
∣∣∣ = 2

ci =
1

3
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Local clustering coefficient

i

Ni

ki = |Ni | = 4∣∣∣{(j , k) ∈ E | j , k ∈ Ni}
∣∣∣ = 2

ci =
1

3
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Local clustering coefficient

i

Ni

ki = |Ni | = 4∣∣∣{(j , k) ∈ E | j , k ∈ Ni}
∣∣∣ = 2

ci =
1

3
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Section 5

Other metrics
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Laplacian and graph spectrum

L = D − A

A = adjacency matrix

D = diagonal matrix of node degrees

Properties

The eigenvalues of L are sometimes called the spectrum of a graph.

The number of times zero appears in eigenvalues tells you the number
of connected components

resistance distance is related to Moore-Penrose inverse of Laplacian.
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Example 1

Human gene regulatory network

Nodes Genes
Edges Interactions
|N| 21.9 K
|E | 12.3 M
k̄ 1.1 K

Assortativity 0.136
Clustering 0.572

http://networkrepository.com/bio-human-gene1.php
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Example 2

IMDB bipartite movie/actor network

Nodes Movies and actors
Edges Actor worked in movie
|N| 896.3 K
|E | 3.8 M
k̄ 8

Assortativity -0.053
Clustering 8.1e-5 1

http://networkrepository.com/ca-IMDB.php

1Because it is bipartite.
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Example 3

Amazon co-purchase network

Nodes Product
Edges Co-purchase
|N| 334.9 K
|E | 925.9 K
k̄ 5

Assortativity -0.059
Clustering 0.205

http://networkrepository.com/com-amazon.php
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Yet more metrics

Metrics specifically for other graphs types
I reciprocity for digraphs

Metrics with specific use
I power-law degree

Lots of others – for some examples see
http://konect.uni-koblenz.de/statistics/
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Limitations of metrics

Graphs are complex.
Any small set of numbers will not capture everything important about
them.

e.g., Hamiltonian cycles
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Further reading I
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