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Section 1

Random Graphs



Why?

@ We often need graphs to use in simulations
> because we aren’t clever enough to do analysis of layers of network
protocols on top of a graph
» e.g., simulations of communications networks
@ We need statistical ensembles of graphs to test ideas
> and there is only 1 real graph
> e.g., to generate confidence intervals on results
@ Random graphs can let us test hypotheses
» postulate a particular type of random graph as a model
* sometimes null models or straw men
> look at its features
@ Often want to understand graph behaviour as it gets larger than any
examples we have

» e.g., how will my algorithm work in the future if the network gets much
bigger?
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The idea at the root

@ We start with the idea that there is an ensemble of graphs
» e.g., G, = {all graphs with n nodes}
> e.g., Gnk = {all graphs with n nodes and k edges }
> but these ensembles are usually VERY VERY big

@ Then we apply a probability measure to the ensemble, e.g., define

P(G), VG € G,

But note that

» P(G) might be too small to calculate

» P(G) may be too computationally complex to calculate
» Even if P(G) is easy, we don't want to use it directly

* e.g., even if we knew P(G) = const, we don’t want to search through
all possible graphs to get “the one”
@ So we need a method for constructing graphs that match a given

probability distribution, or usually that match some observed features
of our graph(s) of interest
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Section 2

Gilbert-Erd6s-Rényi random graph
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Gilbert-Erdés-Rényi random graph [Gil59, ER60]

G(n,p)

Take n = |N| nodes

connect them at random
» for each pair of nodes flip a (biased) coin
» if it is heads connect them

nodes are adjacent with probability p

» number of edges will be binomial as we have n(n — 1)/2 iid Bernoulli
trials, so

prob(1£] = 1) = ("7, V2 pha < oz

all graphs with n nodes, and k edges have equal probability

P(G|k edges) = 1/|Gn k| = const
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Gilbert-Erdés-Rényi random graph features

@ Average number of links e = |E|
n
Ele] =pn(n—1)/2 = p(2).
@ Degree distribution is also binomial
n—1 n—1—
Pk:< B )p"(l—p) k.

@ critical threshold np =1

» As p or n increases, the graphs become more and more likely to be
connected
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Limits of the Binomial distribution: |

Binomial

n _
pi = (k)pk(l - p)" k.
Take limit as n — oo, the Binomial distribution approaches a “Normal”
distribution A (np, np(1 — p)), i.e,
@ mean is u = np
2 =np(1—p)
@ distribution is Gaussian, i.e.,

@ variance is o

Matthew Roughan (School of Mathematical ¢ March 7, 2024 8/26



Limits of the Binomial distribution: |

Proof: by the Central Limit Theorem which states: take sum of n iid
random variables with finite variance

Sn = Z Xna
i=1

then in the limit as n — oo

:Sn—n,u d

Z, o~ — N(0,1),

d C e . e e
where — means convergence in distribution. A Binomial distribution is the
sum of n iid Bernoulli random variates to the result is immediate.
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Limits of the Binomial distribution: |l

Binomial

Pk = (Z) pr(1—p)" k.

Take limit as n — oo, such that np = X is kept constant. The Binomial
converges to the Poisson distribution:
DU

k!

Pk =

@ mean is A = np

2

@ variance is 0 = A = np
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Limits of the Binomial distribution: |l

Proof: np= X\, sop=A/n—0

n!

S A
_ k!(n”—ik)!pk(l—x/n)-k(l—x/n)"
~ k!(nn—ik)!pklexp(—k)
~ Wi—fexp(—/\)
= 2 exp(-)
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Erdés-Rény random graph features

critical piece of information is np = A and how this behaves as n increases

@ node degree distribution is approximately Poisson

_(n—=1\ « n—1—kN/\k
Pk—< P )p(l—p) ~ g exp(=A)

@ average number of links per node is (n — 1)p ~ A

» for A < 1, average number of links per node is < 1
» for A > 1, average number of links per node is > 1

@ probability degree 0 is pp = exp(—A\)
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Connectivity

@ Take case that n — oo with np = X fixed.
@ Chance that two nodes are adjacent is p — 0.

@ What is the chance that they are connected?
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Connectivity

What is the chance two nodes are connected by a length 2 path?

prob{i,j are connected by a length 2 path}
= 1 — prob{no length 2 path exists from i to j}

= 1- H prob{path i — k — j doesn’t exist}

ki

= 1- H (1 — prob{path i — k — j does exist})
ki

- 1— (1 _ p2)n—2

= 1-(1-(/n)?)"?

— 0
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Connectivity

Some crude approximations

prob{i,j are connected by a length 1 path}
prob{i,j are connected by a length 2 path}
prob{/,j are connected by a length 3 path}

prob{i,j are connected by a length k path}

Sum over all possible path lengths and we get

12

p
(n—2)p?
(n—2)(n - 3)p*

nk=1pk = Xk /n

prob{a path exists} ~ A+ 4+ +AX""1)/n

In the limit as n — oo the properties of this depend on whether A is larger

than, or smaller than 1.
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Connectivity

A<

prob{a path exists}
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12

12

A+ X+ 4+ A" Y/n
n—1

Z)\i/n

i=1

(5=1)

0




Connectivity

A=1
prob{a path exists} ~ (A4+A24---+X""1)/n
B n
— 1
A>1

prob{a path exists} =~ (A+ N4 )\n—l)/n
-1
>
n
— 00

(though obviously a real probability can't go to o)
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Gilbert-Erdés-Rényi random graph features

critical piece threshold for np = A
@ np < 1: the size of the largest connected component grows as
O(log n)
@ np = 1: the size of the largest connected component grows as
O(n2/3)
@ np > 1: the largest connected component will have O(n) nodes, and
the next largest component will contain no more than O(log n) nodes.
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Gilbert-Erdés-Rényi random graph features

Clustering

@ global measure of whether nodes tend to cluster
c = 3t1/t2,

@ local measure of how close a node and its neigbours are to being a

clique . .
P H(fak) < E‘Jvk € Nl}’
ki(ki —1)/2 ’
where N; is the neigbourhood of i, and k; = |N;|.
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Global clustering

c= 31’1/1’2,
where
t1 = number of triangles
t» = number of connected triples

@ If three nodes are connected, they form a triangle if there is a third
link.

@ probability of a triangle conditional on the other two links is p.

@ in the limit as n — oo where np = const, the global clustering

c—0
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Local clustering

o HU, k) € E|j, k € Ni}|
o ki(ki —1)/2 '

where N; is the neigbourhood of i, and k; = |N;]|.

e Conditional on k neighbours, there are k(k —1)/2 possible other links.
@ Each exists with probability p
@ On average plk(k —1)/2] of these exists

@ Soas n— oo

_ Pk(k—-1)/2
Elal = =12

= p

— 0
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Gilbert-Erdés-Rényi random graph features

@ clustering: Gilbert-Erdés-Rényi RGs don't cluster well

> intuitively the degree of nodes remains roughly the same
» more choices for destinations of links
» so “neighbours” become less densely adjacent
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Gilbert-Erdés-Rényi Mark I

Take n = |N| nodes

connect them with m edges, randomly assigned
nodes are adjacent with probability p = n(n_—”’l)/z
This is really the Erdés-Rényi graph

in limit pn®> — 0o the two types of Gilbert-Erdés-Rényi graphs have
similar properties.

Matthew Roughan (School of Mathematical ¢ March 7, 2024 23/26



Parameter estimation

@ Whenever we have a model we should ask

» how can | estimate its parameters?
» what data would | need to do so?

@ So parameter estimation (formally part of statistics) should also be
part of any modelling toolkit
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Parameter estimation for Gilbert-Erdds-Rényi

@ The number of edges is a binomial

|E| ~ Bin (IN|(|N| = 1)/2, p)

e Sufficient statistics for estimating parameters are |E| and |N|

@ There are numerous estimators for the parameters of Binomial
distributions

» e.g., MLE (Maximum Likelihood Estimator)

PRI
INI(IN = 1)

» Also many ways to compute confidence intervals, etc.
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Further reading |

P. Erdés and A. Rényi, On the evolution of random graphs, Publications of the
Mathematical Institute of the Hungarian Academy of Sciences 5 (1960), 17-61.

E.N. Gilbert, Random graphs, Annals of Mathematical Statistics 30 (1959),
1441-1144.
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