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Section 1

Optimisation Revision
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Optimisation

Optimisation is a task all human beings, indeed all living things, do. It is
central to any decision making task, i.e., in any task involving choosing
between alternatives. Choice is governed by wanting to make the “best”
decision: e.g.,

minimise the cost of producing a widget;

shortest route to Hungry Jacks, or the bar; or

getting greatest exam mark, given a limited amount of study time.

All involve looking for the best solution to some objective often subject to
some constraints.

We can even think of natural processes such as evolution as a form of
optimisation, and indeed genetic algorithms and evolutionary computing
deliberately exploit this metaphor to solve other optimisation problems we
may wish to solve.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 3 / 31



Notation and Conventions

Throughout these notes we will try to use consistent notation.

lower-case letters, e.g., x , will generally denote scalars

boldface letters, e.g., x, will denote (column) vectors, i.e.,

x =


x1
x2
...
xn


and we say x ∈ Rn

upper case letters, e.g., A, will denote matrices.

There may be exceptions, but we will try to make them clear.
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Optimising a real function

You probably remember that when maximising (or minimising) a
real-valued function

max f (x), x ∈ R,

we look for x such that the derivative is zero

df (x)

dx
= 0.

we can include more than one variable (set partials to zero)

we can include constraints (through Lagrange multipliers)

but the problems we consider in this course don’t fit this pattern.
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A Standard Linear Programming Problem

Linear programming:

max z = cTx + z0
such that Ax ≤ b

and x ≥ 0

Note the use of program here. It doesn’t mean a computer program1, it is
using the older sense of “a plan, schedule, or procedure.” Often the goal
of one of our programs is to determine a schedule (its one of the oldest
mathematically treated optimisation problems).

1Incidentally, the term programming was used for optimisation at least in 1948 by
Dantzig [WD49, Dan49], well before it was used for computer programming. For a nice,
quick history of optimisation see [Leo08].
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Requirements

We’ll be looking at a different class of problems from max f (x), x ∈ R.

Constraints are a very important part

The objective function is linear, so f ′ 6= 0

Variables might be restricted to be integers

The dimension of problem might be very high (1000s)

We will consider new techniques which allow us to address some of these
challenges.
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What is the background we need to know to get started?

We’ll be looking at Linear Programs.

What do we need to know?

Constraints define a region
I we should understand the shape of that region, and the affect it has on

the solution
I the constraints are linear inequalities (or equalities), so what sort of

space do they define?

The objective function is also linear

We need to remember some of the linear algebra you did in first year.
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Section 2

The Geometry of Linear Programming
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Convex Sets

Definition (A convex set)

A set S ⊆ Rn is called a convex set if for all x , y ∈ S and 0 ≤ α ≤ 1

x , y ∈ S =⇒ αx + (1− α)y ∈ S ,

i.e., the line segment joining x and y lies in S .

Convex Non-convex
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Convex Functions

Definition (A convex function)

A function f : S → R is a convex function if for all x , y ∈ S and 0 ≤ α ≤ 1

αf (x) + (1− α)f (y) ≥ f
(
αx + (1− α)y

)
i.e., chords don’t lie below the function.

x y

f(x)

αx + (1-α)y

αf(x) + (1-α)f(y)

f(αx + (1-α)y)
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Convex Sets

Lemma

Given m convex functions gi (x), the set Ω defined by

Ω =
{
x ∈ Rn

∣∣ gi (x) ≤ 0, for i = 1, 2, . . . ,m
}
,

is convex.
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Convex Sets

Proof

Start by considering a single constraint.

Take the set
Ωi =

{
x ∈ Rn

∣∣gi (x) ≤ 0
}
.

Take two points in this set x and y, then consider a point on the chord
between them, z = αx + (1− α)y, for α ∈ [0, 1]. As gi (·) is convex,

gi (z) = gi
(
αx + (1− α)y

)
≤ αgi (x) + (1− α)gi (y),

Now gi (x) ≤ 0 and gi (y) ≤ 0 because x, y ∈ Ωi and α and 1− α ≥ 0, so

gi
(
αx + (1− α)y

)
≤ 0,

and hence z ∈ Ωi , i.e., any point on a chord between two point in the set
must also be in the set, so Ωi is convex.
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Convex Sets

Proof (continued).

Now we move on to sets with multiple constraints.

Ω =
{
x ∈ Rn

∣∣ gi (x) ≤ 0, for i = 1, 2, . . . ,m
}

= ∩mi=1Ωi

We note two properties of convex sets:

The empty set and the set Rn are convex.

The intersection of two convex sets is convex.

Together these mean (e.g., by induction) that Ω = ∩mi=1Ωi must be
convex.

You are asked to prove the intersection of two convex sets is convex in
Assignment 0.
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Linear bounds, and convexity

Lemma

The region defined by a set of linear inequalities Ax ≤ b and x ≥ 0 is
convex.

Proof.

It is almost self-evident that a straight line is convex.
I a chord along the straight line, is just that
I they aren’t strictly convex as the chord doesn’t lie above the line, but

that doesn’t matter here

From the previous lemma, the set of linear constraints aix ≤ bi and
xi ≥ 0 defines a convex set.
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Why does it matter?

Theorem

If S is a convex set and f is a convex (concave) function, then any local
minimum (maximum) of f is a global minimum (maximum).

Proof.

If x∗ is a local minimum, then by definition for some small h

f (x∗ + h) ≥ f (x∗)

Now choose any other point x > x∗, we can draw a chord between x∗ and
x , and this chord must lie no lower than f (·). For instance, given h > 0, at
x∗ + h the chord will be ≥ f (x∗ + h). That implies the chord from
(x∗, f (x∗)) to (x , f (x)) has non-negative slope, and hence f (x) > f (x∗),
which implies a global minimum.
We can repeat the argument for x < x∗.

Note that the result doesn’t require a differentiable function.
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Geometry of linear programming

Obviously, the previous result can be generalised to n dimensions, and we
see that

Linear inequalities define a convex set, and the linear objective
function is both convex and concave

Hence the local minimum of a linear program will also be its global
minimum

The objective function here is linear, so f ′ 6= 0 anywhere, so the local
minimum (if it exists) will occur on the boundary

So the minimum of a linear program (if it exists) is somewhere on the
boundary
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Illustration
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(2,2), f=10

(0,3), f=9

(0,0), f=0 (4,0), f=8

(2,2), f=10

maximize
  f = 2x + 3y

subject to 

  2x + 4y ≤ 12

   x +  y ≤ 4

        x ≥ 0

        y ≥ 0
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Section 3

Linear Equations
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Linear Equations

Given a system of linear equations Ax = b there are three possibilities:

They have no solutions

They have exactly one solution

They have infinitely many solutions

And we know how to test for these cases, and solve when possible.
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Näıvely

For a square matrix A we can solve Ax = b by using the matrix inverse,
e.g.,

x = A−1b

But this has issues

in our problem, the matrix might not be square

even if it were square it might not be invertible (non-singular)

even it is invertible, this approach is
I numerically inefficient
I potentially numerically unstable

So we don’t do this
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Gauss-Jordan elimination

Carl Friedrich Gauss (17771855)

Though apparently was known to Chinese mathematicians around the
birth of Christ.
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Gauss-Jordan elimination

We augment the matrix A to include the RHS, i.e., M = [A | b]

We perform an allowed set of operations M → M ′

1 Interchange two rows
2 Perform a pivot at element (i , j) which combines

1 Multiply a row by a nonzero number; and,
2 Add a multiple of one row to another row,

such that element M ′
i,j = 1 and M ′

k,j = 0 for k 6= i

The allowed operations result in an equivalent augmented matrix.

The goal is to manipulate it into a form where the solution is obvious.
For instance, if we could manipulate it into the form

[I |b∗]

Then we can read off the solution x = b∗ because this augmented
matrix corresponds to the equations

Ix = b∗
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Augmented matrix

Definition

Given a set of equations Ax = b the

coefficient matrix is A

augmented matrix is [A|b]

The augmented matrix contains all the information about the
equations

I there is a 1:1 correspondence between the augmented array and a set
of equations

We work on that to keep all the relevant data together
I row operations on the augmented matrix convert to a new augmented

matrix, corresponding to a set of equations which have the same
solutions
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Gauss-Jordan elimination example

Equations Augmented matrix

x1 + 3x2 + x3 = 9 1 3 1 9
x1 + x2 − x3 = 1 1 1 -1 1

3x1 + 11x2 + 5x3 = 35 1 11 5 35

x1 + 3x2 + x3 = 9 1 3 1 9
− 2x2 − 2x3 = −8 0 -2 -2 -8

2x2 + 2x3 = 8 0 2 2 8

x1 − 2x3 = −3 1 0 -2 -3
x2 + x3 = 4 0 1 1 4

0 = 0 0 0 0 0

We performed 2 pivots

1 pivot(1,1) (a pivot on the (1,1) element of the augmented matrix)

2 pivot(2,2)
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Gauss-Jordan elimination example

In this form

Equations Augmented array

x1 − 2x3 = −3 1 0 -2 -3
x2 + x3 = 4 0 1 1 4

0 = 0 0 0 0 0

we can read off the solution. There is a degree of freedom, because the
last equation is always true. This gives us a free variable: here we take it
to be x3 = t, and the solution will be

x = (−3, 4, 0) + t(2,−1, 1)

We could choose to set x3 = 0, and get a solution (−3, 4, 0).
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Notes

Formally we perform elementary row operations
I Swap two rows.
I Multiply a row by a nonzero scalar.
I Add a scalar multiple of one row to another.

We aim to put the tableau in reduced row echelon form
I the lower-triangular part of the augmented matrix are all zeros
I for every non-zero row, the leading coefficient is to the right of the

leading coefficient of the row above
I leading coefficients are 1

Gauss-Jordan is a numerically unstable procedure in some cases
I other approaches, e.g., QR decomposition, are often preferred
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General Case

For optimisation, we don’t want a single solution to the constraints, or the
optimisation is trivial.

Take Ax = b, where A is of size m × n

n variables

m equations

With full rank A, and n > m:

There are ∞ solutions
I we don’t have enough information to select one

Choose (n −m) variables to be 0. Think of this as either
I adding n −m additional equations xi = 0
I reducing the number of variables down to m

then there will (hopefully) be a unique solution for the other m
variables
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Terminology

Definition (Basic solution)

A basic solution to Ax = b is a solution with at least n −m zero variables.

Definition (Non-degenerate basic solution)

A basic solution is non-degenerate iff exactly n −m variables are zero.

It’s degenerate2 if there are more than n −m zeros.

Definition (Basic and non-basic variables)

For a non-degenerate basic solution, the m non-zero variables are called
basic, and the n −m zero variables are non-basic or free.

2In mathematics, we call a case degenerate when it is qualitatively different from the
other solutions, and thus belongs to a different class of (often simpler) solution. Often
its features are lost under small perturbations. For example, a line is a degenerate
parabola.
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Takeaways

Linear programs are guaranteed to be convex problems, and hence we
only need to find a local minimum (maximum) and it will be
guaranteed to be a global minimum (maximum)

Linear equation techniques
I Gauss-Jordan (pivots, etc)
I Basic solutions

will be vital for what we are doing

If you don’t remember this stuff, revise!!!
I the first assignment has a bunch of revision questions
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Further reading I

George B. Dantzig, Programming of interdependent activities: Ii mathematical
model, Econometrica 17 (1949), no. 3/4, 200–211 (English), This is a revised
version of a paper that appeared at the Cleveland Meeting of the Econometric
Society on December 27, 1948.

R. De Leone, The origin of operations research and linear programming,
http://globopt.dsi.unifi.it/gol/Seminari/DeLeone2008.pdf, 2008.

Marshall K. Wood and George B. Dantzig, Programming of interdependent
activities: I general discussion, Econometrica 17 (1949), no. 3/4, 193–199
(English), This is a revised version of a paper that appeared at the Madison
Meeting of the Econometric Society on September 9, 1948.
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