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Section 1

Simplex Phase II
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Intuition

Assume we start in feasible, canonical form
I Corresponds to a feasible vertex in original inequality form
I Often starts this way
I Simplex Phase I will fix this if it isn’t already

Test to see if it is optimal (if so then stop)

Move to an adjacent vertex such that
I the solution remains feasible
I the solution gets better (or at least no worse)

And repeat until its optimal, or we can’t go any further
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max z = 13x1 + 12x2 + 17x3
subject to 2x1 + x2 + 2x3 ≤ 225

x1 + x2 + x3 ≤ 117
3x1 + 3x2 + 4x3 ≤ 420

xi ≥ 0, for i = 1, 2, 3
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Operating on a tableau

Imagine the Simplex Tableau

M =
A 0 b

−cT 1 z0

If we perform the same row operations we were allowed in Gauss-Jordan,

M
rowops→ M ′

then M ′ will be an equivalent tableau

it expresses exactly the same LP

for exactly the same reasons that G-J works
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Pivots

We can perform the same row operations we were allowed in
Gauss-Jordan.

We want to change vertices:
I change which constraints are active (in inequality form)
I change which variables are basic (in equality form)

We do this with pivot operations on (i , j) where
I i means the ith row of A
I j means the jth column of A

We don’t pivot in the z column because it represents the objective.

One pivot (plus associated bits) is one iteration of Simplex

M(i) → M(i+1)
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Entering and Leaving Variables

When we perform a pivot, one variable leaves the set of basic variables,
and another enters the basic set.

Definition (Entering Variable)

The entering variable is the variable that enters the basic set after a pivot
operation. It corresponds to the column j of the pivot.

Definition (Leaving Variable)

The leaving variable is the variable that leaves the basic set after the pivot
operation. The row i of the pivot determines the leaving variable, by
selecting constraint i , and the current basic variable k associated with it.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 15, 2019 7 / 26



Rules for Choosing Entering and Leaving Variables

There are different rules for choosing the entering and leaving variables,
but these rules have two components:

mandatory: all choices must satisfy these in order for Simplex to work

discretionary: choices can pick and choose between these.
They matter, because may affect the performance of the overall
algorithm, and sometimes will have a big impact, but there are
alternatives.
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Choosing the Entering Variable (the column)

Mandatory: the choice of column j must satisfy

−cj < 0,

i.e., the current jth value in the z-row must be negative.

Discretionary: when there is a choice between multiple possible
negative values, we can implement several different approaches.

I e.g., choose the most negative

I will tell you the mandatory rules, but I want you to work out what
discretionary rules makes the most sense.
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Choosing the Entering Variable: Example

Example

p
iv

ot
co

lu
m

n
x1 x2 x3 x4 x5 x6 z b

1 3 −2 1 0 0 0 3
−1 2 1 0 1 0 0 1

0 3 1 0 0 1 0 2

2 1 −2 0 0 0 1 −2

We choose j = 3 because this is the only A-column with −cj < 0
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Choosing the Leaving Variable (pivot row)

Mandatory: given column j , the choice of row i must
I aij > 0
I of the non-negative possibilities, choose smallest possible bi/aij

Discretionary: when there is more than one equal value of bi/aij we
get to choose one.

I want you to work out what discretionary rule makes the most sense.
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Choosing the Leaving Variable: Example

Example

x1 x2 x3 x4 x5 x6 z b
1 3 −2 1 0 0 0 3 aij < 0
−1 2 1 0 1 0 0 1 bi/aij = 1 pivot row

0 3 1 0 0 1 0 2 bi/aij = 2
2 1 −2 0 0 0 1 −2

We already chose j = 3, so now examine possible rows,

we can eliminate row 1, because a13 ≤ 0

we have

b2/a23 = 1

b3/a33 = 2

we choose the smallest, so i = 2

`B = {4, 5, 6}, and the ith gives us the leaving variable x`2 = x5
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Stopping rules

If you can’t satisfy a mandatory rule, then Simplex stops

Output state:
I if you can’t find a new entering variable, i.e., no column has −cj < 0

then you have the optimal value
I if you can’t find a new leaving variable, then the problem is unbounded

Why do the choice rules work?
I we have two imperatives

1 stay feasible
2 improve the objective function (or at least make it no worse)

I the mandatory rules are aimed at these imperatives
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Why Have Mandatory Choice Rules: column

Why do we require −cj < 0 for the pivot column j?

Simplex keeps track of z-value in z0 (bottom right corner)

When we pivot at (i , j)

z ′0 = z0 +
cj
aij

bi

I Feasible canonical form has bi ≥ 0
I We choose a pivot so aij > 0
I If −cj < 0, then the above means that

z ′0 ≥ z0

This rule ensures that the objective is non-decreasing
I it only stays the same if bi = 0

We stop when we can’t find such a column, because the objective
can’t be increased any more, i.e., we have found the optimal solution
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Why Have Mandatory Choice Rules: row
Why do we require aij > 0 and smallest possible bi/aij for row i?

(1) so objective remains non-decreasing

(2) when we pivot at (i , j) the new b column is

b′k = bk −
akj
aij

bi , for i 6= j

for feasible canonical form bk ≥ 0, and we choose aij > 0 so
I if akj ≤ 0 then b′k ≥ bk ≥ 0
I if akj > 0 for all rows k 6= i

b′k = akj

(
bk
akj
− bi

aij

)
≥ 0

so b′k ≥ 0 we choose i such that for all rows k 6= i

bk
akj
≥ bi

aij

So this rule maintains feasibility
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Why Have Mandatory Choice Rules: row

What if we can’t find a row?

That means all of aij ≤ 0.

Consider the following solution
I set entering variable xj = t > 0
I set other free variables to 0
I solve for the basic variables `B

x`i = bi − aij t

F normally, we would have had t = 0, and x`i = bi
F note x`i ≥ 0 as bi ≥ 0, t > 0 and aij < 0
F so this solution is feasible for any value t > 0

Hence we have an arbitrarily large feasible solution

The problem is unbounded
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Discretionary Choice Rules

I want you to find the discretionary part of your choice rules.

research them – you may want to Google “Bland’s rule”

you need to write a Simplex program using functions so that you can
change choice rules easily and experiment (some class exercises may
require you to be able to try different choice rules).

You will be examined on choice rules, so this part of your work is not
optional!!!
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Output

Finally, if we found a feasible, optimal value, just read off the solution

1 All of the non-basic variables are zero.

2 For the basic variables in the list `B , just read of the values

x∗`B(i) ← bi

3 z∗, the optimal value of the objective function, is given by the bottom
value of the b column (where you originally placed z0)
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Simplex Phase II pseudo-code
Assumes a problem in standard equality form:
maxx

{
z = cTx + z0

∣∣Ax = b, x ≥ 0
}

such that when we construct the
Tableau M it will be in feasible canonical form

Input: A, b, c, z0, `B // implicitly n variables, m constraints
Output: x∗, z∗

1 Construct Simplex Tableau M // an (m + 1)× (n + 2) matrix
2 while at least one −ci < 0 do
3 Select Entering Variable xj (column j)
4 Select Leaving Variable xk (row i)
5 if there is no possible leaving variable then
6 break // problem is unbounded
7 else
8 `B(i)← j
9 M ← Pivot(M, i , j)

10 end

11 end
12 Set x∗ = 0

¯
13 for i = 1...m do
14 x∗`B(i) ← bi = M(i , b-col)

15 end
16 z∗ ← M(z-row, b-col)

Algorithm 1: Simplex Phase II
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Simplex Phase II Example: iteration 1

Starts at x0 = (0, 0, 0, 225, 117, 420), z0 = 0

x1 x2 x3 s4 s5 s6 z b

2 1 2 1 0 0 0 225

1 1 1 0 1 0 0 117

3 3 4 0 0 1 0 420

−13 −12 −17 0 0 0 1 0

⇓
1 1/2 1 1/2 0 0 0 225/2

0 1/2 0 −1/2 1 0 0 9/2

0 3/2 1 −3/2 0 1 0 165/2

0 −11/2 −4 13/2 0 0 1 2925/2

After the pivot x1 = (225/2, 0, 0, 0, 9/2, 165/2), z1 = 1462.5
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Simplex Phase II Example: iteration 2

Starts at x1 = (225/2, 0, 0, 0, 9/2, 165/2), z1 = 1462.5

x1 x2 x3 s4 s5 s6 z b

1 1/2 1 1/2 0 0 0 225/2

0 1/2 0 −1/2 1 0 0 9/2

0 3/2 1 −3/2 0 1 0 165/2

0 −11/2 −4 13/2 0 0 1 2925/2

⇓
1 0 1 1 −1 0 0 108

0 1 0 −1 2 0 0 9

0 0 1 0 −3 1 0 69

0 0 −4 1 11 0 1 1512

After the pivot x2 = (108, 9, 0, 0, 0, 69), z2 = 1512

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 15, 2019 21 / 26



Simplex Phase II Example: iteration 3

Starts at x2 = (108, 9, 0, 0, 0, 0, 69), z2 = 1512

x1 x2 x3 s4 s5 s6 z b

1 0 1 1 −1 0 0 108

0 1 0 −1 2 0 0 9

0 0 1 0 −3 1 0 69

0 0 −4 1 11 0 1 1512

⇓
1 0 0 1 2 −1 0 39

0 1 0 −1 2 0 0 9

0 0 1 0 −3 1 0 69

0 0 0 1 −1 4 1 1788

After the pivot x3 = (39, 9, 69, 0, 0, 0), z3 = 1788
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Simplex Phase II Example: iteration 4
Starts at x3 = (39, 9, 69, 0, 0, 0), z3 = 1788

x1 x2 x3 s4 s5 s6 z b

1 0 0 1 2 −1 0 39

0 1 0 −1 2 0 0 9

0 0 1 0 −3 1 0 69

0 0 0 1 −1 4 1 1788

⇓
1 −1 0 2 0 −1 0 30

0 1/2 0 −1/2 1 0 0 9/2

0 3/2 1 −3/2 0 1 0 165/2

0 1/2 0 1/2 0 4 1 3585/2

After the pivot x4 = (30, 0, 165/2, 0, 9/2, 0), z4 = 1792.5

there are no more possible pivot columns, so we stop, and this is the
optimal solution
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Simplex Phase II Example
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Takeaways

Simplex Phase II
I starts in feasible canonical form
I operates by choosing pivots (rules)
I each pivot

F keeps it feasible
F makes objective no worse

I ends
F unbounded
F optimal solution
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Further reading I
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