
Transform Methods & Signal Processing
Class Exercise 4: solutions

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

1. 4 marks Look at the images displayed in figure below (the first is sinusoidal in one direction, and constant in the
other, the second is zero outside, and one inside a circle). Describe what the power-spectrum of these images would
look like.
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Solution: In the first case, the image shows a sinusoid in thex direction, and a constant in they direction. Note
that there are 10 repetitions of the sinusoid, so it is frequency 10. Hence, the power-spectrum will have a delta at the
frequency bin corresponding to frequency 10 horizontally,and zero vertically, and the corresponding term for frequency
-10. The figure below shows this FT.

In the second case, the function is (approximately) radially symmetric, and so the FT will also have (approximate)
radial symmetry. Further, if we took a single slice through the image (say aty = 50) we would see a profile that looked
like a rectangular pulse. Therefore, we should expect to seethe FT of a rectangular pulse (a sinc) when we examine a
slice of the image’s FT. Therefore the power-spectrum will look like a sinc2 function rotated around the zero frequency
point.

2. 4 marks Calculate the two-dimensional convolution off(x, y) = δ(x)r(y) with g(x, y) = r(x)δ(y). Hint a 2D
convolution is

[f ∗ g](x, y) =

∫

∞

−∞

∫

∞

−∞

f(x′, y′)g(x − x′, y − y′) dx′ dy′

Derive the Fourier transform of this function.

Solution:

[f ∗ g](x, y) =

∫

∞

−∞

∫

∞

−∞

f(x′, y′)g(x − x′, y − y′) dx′ dy′
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=

∫

∞

−∞

δ(x′)r(x − x′) dx′

∫

∞

−∞

r(y′)δ(y − y′) dy′

= r(x)r(y)

which is just a 2D rectangular pulse. It is a separable function, so we can calculate the FT of thex andy components
separately, and as each is a rectangular pulse, the FTs will be sinc functions, i.e.

F{r(x)r(y)} = sinc(x)sinc(y)

Note that the product in space doesn’t seem to become a convolution in frequency. However, if we were to write this
another way, using the fact that ther(x) is constant with respect toy, and so its FT will be a delta in they direction,
i.e. the FTF{r(x)} = F{r(x)const(y)} = sinc(x)δ(y) then we get

F{r(x)r(y)} = (sinc(x)δ(y)) ∗ (sinc(y)δ(x))

= sinc(x)sinc(y)

in much the same way that we calculated the previous convolution.

3. 2 marks Write down the natural generalization of the Fourier transform to 3 dimensions.

Solution:

F (u, v, w) =

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

f(x, y, z)e−i2π(ux+vy+wz) dz dy dz

4*. 5 marks Give the continuous Fourier transform of the following function

(a) f(x, y) = exp
(

−π(xcos(θ) + y sin(θ))2
)

Solution: The function is a Gaussianf(x, y) = exp
(

−πx2
)

rotated throughθ degrees. The Fourier transform of a
Gaussian, is a Gaussian, e.g. forf(x, y) = exp

(

−πx2
)

, we get FTF (s, t) = exp
(

−πs2
)

δ(t), but we must also
rotate the Fourier transform in the Fourier domain to get

F (s, t) = exp
(

−π(scos(θ) + t sin(θ))2
)

δ(−s sin(θ) + t cos(θ))

In more detail

F{f(x cos θ + y sin θ,−x sin θ + y cos θ)} =

∫∫

∞

−∞

f(x cos θ + y sin θ,−x sin θ + y cos θ)e−i2π(sx+ty) dx dy

Take the change of variables (a rotation)x̃ = x cos θ + y sin θ andỹ = −x sin θ + y cos θ, then the inverse transform is
just a reverse rotationx = x̃ cos θ − ỹ sin θ andy = x̃ sin θ + ỹ cos θ anddx dy = d̃x d̃y so we can write the integration
as

F{f(x cos θ + y sin θ,−x sin θ + y cos θ)} =

∫∫

∞

−∞

f(x̃, ỹ)e−i2π(s(x̃ cos θ−ỹ sin θ)+t(x̃ sin θ+ỹ cos θ)) d̃x d̃y

=

∫∫

∞

−∞

f(x̃, ỹ)e−i2π(x̃(s cos θ+t sin θ)+ỹ(−s sin θ+t cos θ)) d̃x d̃y

=

∫∫

∞

−∞

f(x̃, ỹ)e−i2π(x̃s̃+ỹt̃) d̃x d̃y

where(s̃, t̃) are the rotated versions of(s, t), and soF{f(x̃, ỹ)} = F (s̃, t̃).
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