Transform Methods & Signal Processing
Class Exercise 4: solutions

Matthew Roughan
<matthew.roughan@adelaide.edu~au

1 Look at the images displayed in figure below (the first is siidesl in one direction, and constant in the
other, the second is zero outside, and one inside a circlejciibe what the power-spectrum of these images would
look like.
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Solution: In the first case, the image shows a sinusoid inahgirection, and a constant in thedirection. Note
that there are 10 repetitions of the sinusoid, so it is fraguel0. Hence, the power-spectrum will have a delta at the
frequency bin corresponding to frequency 10 horizontalhgl zero vertically, and the corresponding term for fregyen
-10. The figure below shows this FT.
In the second case, the function is (approximately) radgfimmetric, and so the FT will also have (approximate)
radial symmetry. Further, if we took a single slice throughimage (say at = 50) we would see a profile that looked
like a rectangular pulse. Therefore, we should expect tatseeET of a rectangular pulse (a sinc) when we examine a
slice of the image’s FT. Therefore the power-spectrum wik like a siné function rotated around the zero frequency
point.

2. Calculate the two-dimensional convolution ffz,y) = é(z)r(y) with g(z,y) = r(x)d(y). Hinta 2D
convolution is

el = [ [T e ate =ty -y aetay

Derive the Fourier transform of this function.
Solution:

[fxgl(z,y) = [ [ @'y )g(x =2,y — o) da’ dy’
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which is just a 2D rectangular pulse. Itis a separable foncgo we can calculate the FT of thendy components
separately, and as each is a rectangular pulse, the FTsanglhb functions, i.e.

F{r(z)r(y)} = sindx)sindy)

Note that the product in space doesn’t seem to become a eatioroin frequency. However, if we were to write this
another way, using the fact that thér) is constant with respect g and so its FT will be a delta in thedirection,
i.e. the FTF{r(z)} = F{r(z)const(y)} = sindx)d(y) then we get
Flr(z)r(y)} = (sindz)é(y)) * (sindy)d())
= sindx)sindy)

in much the same way that we calculated the previous conwalut

3 Write down the natural generalization of the Fourier transfto 3 dimensions.
Solution:
o0 oo poo )
F(u,v,w) = / / / f(z,y, z)e”2ruetoutes) g gy d
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4*, Give the continuous Fourier transform of the following ftion
(@) f(z,y) =exp (77r(rcos(9) + ysi11(9))2)

Solution: The function is a Gaussiaf{z,y) = exp (—ch) rotated throughy degrees. The Fourier transform of a
Gaussian, is a Gaussian, e.g. fit,y) = exp (—ma?), we get FTF(s,t) = exp (—ms?) §(¢), but we must also
rotate the Fourier transform in the Fourier domain to get

F(s,t) = exp (—m(scos(8) + tsin(6))?) 6(—ssin(8) + ¢ cos(#))
In more detail

i >
F{f(xcosb +ysinf, —xsinf + ycosb)} = // f(xcosd +ysinf, —axsind + y cos 0)e 27T g
JJ oo
Take the change of variables (a rotatiany x cos # + y sin § andy = —x sin # + y cos 6, then the inverse transform is
just a reverse rotation =  cos — §sinf andy = Z sin§ + ¢ cos § anddr dy = di: dj S0 we can write the integration
as
e ; - . o .
F{f(wcosf+ysind, —wsind+ycosd)} — // (@, §)e— 2@ con0—sin )+ sin 0+ cos0) g
o
_ // f(z, g)e—i2ﬁ(i'(s €08 0+t sin 0)+§(—ssin O+t cos 0)) @
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where(3, ) are the rotated versions 6f, t), and saF{f(#,9)} = F(5,1).




