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Introduction

OF bodies chang'd to various forms, I sing:

Ye Gods, from whom these miracles did spring,
Inspire my numbers with coelestial heat;

"Till T my long laborious work compleat:

Ovid, Metamorphoses
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Note that not everything said in the lectures is included in the notes provided. You must listen,
and take notes. These spaces in your handout notes are provided to allow you to take notes
in lectures. You may be examined on material that is discussed in lectures, even if it does not
appear explicitly in your notes!
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Outline

Introduction: (1 week)

Continuous Fourier transforms: (1 week)
Discrete Fourier transforms: (2 weeks)

Filters and Linear Systems: (2 weeks)

The Radon Transform and tomography: (1 week)

vV v v v VY

Random Processes and some theorems: (1 week)
» Wavelets: (4 weeks)

More detailed outline available at

http://internal.maths.adelaide.edu.au/people/mrough an/Lecture_notes/

Transform_methods/
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Some reference books

>

>

"Understanding Digital Signal Processing”, R.G.
Lyons, Prentice-Hall, 2nd edition, 2004.

"Signals, Systems and Transforms”, C.L.Phillips,

J.M.Parr and E.A.Riskin, Prentice-Hall, 3rd edition,
2003.

"The Fourier Transform and its Applications”, R.N.
Bracewell, McGraw-Hill, 2000.

"A Wavelet Tour of Signal Processing”, Stephan
Mallat, Academic Press, 2001.

"Digital Image Processing”, R.C. Gonzalez and R.E.
Woods, 3rd Ed., Prentice Hall, 2008.
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On-line materials

All materials can also be found at

http://internal.maths.adelaide.edu.au/people/mrough an/Lecture_notes/

Transform_methods/

MyUni is not used in this course.

Transform Methods & Signal Processing (APP MTH 4043): ezl — p.5/61




Motivation

A man camped in a national park, and noticed Mr Snake
and Mrs Snake slithering by. "Where are all the little
snakes?" he asked.
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Motivation for transformation

» operations on transformed data may be easier
log(ab) = loga+ logb

insight behind slide rules

> want to compute ab

> take logs (with slide rule)

> add the logs loga+ logb

> invert the log function ab = exp(loga+ logb)
» the same information is present

but somehow more accessible
> time domain vs frequency domain
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The point is that sometimes transforms make it easier to do certain things, e.g. logarithms

make it easier for us to multiply. The Fourier Transform is often used because it makes
convolutions easier.
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Application areas

v

signal and image processing
physics (e.g. astronomy)

number theory

probability theory and statistics
cryptography

acoustics

oceanography and seismology

optics and crystallography
geometry

vV VvV VvV VY VY VVY

everything else...
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Applications: signal processing

» Internet traffic analysis
> detect anomalies (DoS attacks and worms)
> characterize traffic (as a fractal)
» Music generation and analysis
> frequency, pitch and harmonics
> music structure, and fractals
» Biomedical engineering
> ECG processing
> CAT and MRI scans
» Image processing
> detecting objects in images
> compression (JPEG, fingerprints)
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More examples
» astronomy
> enhancing blurry images
> understanding repeated patterns: e.g. pulsars

(cheap) digital music and TV

compression: music (e.g. MP3), images (JPEG), voice (cell phones, skype)
noise reduction

CGI (Computer Generated Images)

v
vvvvg

» telecommunications
> echo suppression
> equalization
» industry
> process monitoring
> finding problems (e.g. bad bearings on trains)
> mining (finding ore bodies)
» military
> sonar
> radar
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Integral transforms

» An integral transform is a tfransform defined in
terms of an integral

F(t) — / f(t)g(t, )t

» Map a function (say of time) to a function of s
» g(-) is called the kernel of the transform

» notation (several alternatives)
T{f(t);s} = J f(t)g(t,s)dt

F(s)= [ f(t)g(t,s)dt, H(s)
F(s) = [f(t)g(t,s)dt, H(s)
f(s) = [ f(t)g(t,s)dt

v

J/h(t)g(t,s)dt
J/h(t)g(t,s)dt

v Vv V

Transform Methods & Signal Processing (APP MTH 4043): lezl — p.10/61

Linear operators

» operators on functions (e.g. of fime)
could call it a functional

» linear operator O{f} is defined by
O{af +bh} = aO{ f} +bO{h}
for a,b,e R

» integral fransformations are linear operators

/[af(t)+bh(t)]g(s,t)dt: /f(t)g(s,t)dt+b/h(t)g(s,t)d
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Examples of integral transforms

Name kernel g(-) transform of f(t)
Identity 5(s—1) F(s) = / " (1) 8(s—t)dt
Fourier e s F(s)::/oo f(t)e'Sdt
Laplace e, fort>0|F(s :/Ooof(t)eadt

. . e 1
Hilbert s F(s) = /_ L0
Mellin 71 F(2) = / " f (o Lt

0

Fourier Cosine | cog(s) F(s) = / " £ (t) cog(t) dit
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An example: the Fourier transform

1
0
-1
0 0.2 0.4 0.6 0.8 1
time (seconds)
4000 ' ' ' .

0 10 20 30 40 50
frequency (Hz)
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The figure shows a simple sine wave (top plot), and its power spectrum (lower plot), formed
by taking the square of the (Discrete) Fourier transform.

Matlab code:

% file: fft_sin_1.m, (c) Matthew Roughan, Sun Jun 27 2004
X = (0:0.01:1);

f = 10; % frequency is ten cycles per second

y =sin2 * pi *» f * x);

figure(1);

subplot(2,1,1)

hold off

plot(x, y, 'linewidth’, 3);
set(gca,’xlim’, [0 max(x)]);
set(gca,'linewidth’, 3, 'fontsize’, 18);
xlabel(‘time (seconds)’);

z = abs(fft(y));

subplot(2,1,2)

hold off

stem(0:(length(z)-3)/2, z(1:end/2)."2, 'linewidth’, 3)
set(gca,'linewidth’, 3, 'fontsize’, 18);
xlabel(‘frequency (Hz)’);

set(gcf, 'PaperUnits’, 'centimeters’)
set(gcf, 'PaperPosition’, [0 0 20 11.5])
print(-depsc’, 'Plots/fft_sin_1.eps’);
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An example: the Fourier transform

(@)

AVAVAVAVAY

tnhe(secondé)
4000 ' ' ' .

An example: the Fourier transform

2

_2 - -
0 0.2 0.4 0.6 0.8 1
time (seconds)
4000 r r r v

0 10 20 30 40 50
frequency (Hz)
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0 10 20 30 40 50
frequency (Hz)
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The figure shows a simple sine wave (top plot), and its power spectrum (lower plot), formed
by taking the square of the (Discrete) Fourier transform.

Matlab code:

% file: fft_sin_la.m, (c) Matthew Roughan, Sun Jun 27 2004
X = (0:0.01:1);

f =5 % frequency is 5 cycles per second

y =sin2 * pi *» f * x);

figure(1);

subplot(2,1,1)

hold off

plot(x, y, 'linewidth’, 3);
set(gca,’xlim’, [0 max(x)]);
set(gca,'linewidth’, 3, 'fontsize’, 18);
xlabel(time (seconds)’);

z = abs(ffi(y));

subplot(2,1,2)

hold off

stem(0:(length(z)-3)/2, z(1:end/2)."2, 'linewidth’, 3)
set(gca,'linewidth’, 3, ‘fontsize’, 18);
xlabel(‘'frequency (Hz)');

set(gcf, 'PaperUnits’, 'centimeters’)
set(gcf, 'PaperPosition’, [0 0 20 11.5])
print(-depsc’, 'Plots/fft_sin_la.eps’);
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When we add two sine waves we can see them clearly separated in the frequency domain.

% file: fft_sin_2.m, (c) Matthew Roughan, Sun Jun 27 2004
X = (0:0.01:1);
fl =17 % frequency 1 = 7 Hz

f2 = 15; % frequency 2 = 15 Hz
y = sin(2 xpi*fl * x) + sin(2 *pi *f2 * Xx);

figure(2);

subplot(2,1,1)

hold off

plot(x, y, ’linewidth’, 3);
set(gca,’xlim’, [0 max(x)]);
set(gca,linewidth’, 3, ‘fontsize’, 18);
xlabel(time (seconds)’);

z = abs(fft(y));

subplot(2,1,2)

hold off

stem(0:(length(z)-3)/2, z(1:end/2)."2, ’linewidth’, 3)
set(gca,'linewidth’, 3, 'fontsize’, 18);
xlabel(‘frequency (Hz)’);

set(gcf, 'PaperUnits’, 'centimeters’)
set(gcf, 'PaperPosition’, [0 0 20 11.5])
print(-depsc’, 'Plots/fft_sin_2.eps’);
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An example: the Fourier transform

5

0 0.2 0.4 0.6 0.8 1
time (seconds)

0 10 20 30 40 50
frequency (Hz)
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An example: Beats

2

0 2 4 6 8 10
time (seconds)

0 1 2 3 4 5 6 7 8 9 10
frequency (Hz)
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Even thought we know that the signal is constructed of four simple periodic functions, it is
hard to see this when looking at the signal. However, it is obvious when we examine the
Fourier transform.

% file: fft_sin_3.m, (c) Matthew Roughan, Sun Jun 27 2004

x = (0:0.005:1);

fl=17 % frequency 2 = 7 Hz

2 = 15; % frequency 2 = 15 Hz

f3 = 29; % frequency 2 = 29 Hz

fa = 42; % frequency 2 = 42 Hz

y = sin(2 *pi*fl * x) + sin(2 *pi*f2 * x) + sin(2 *pi*f3 * x) + sin(2 *pi *xf4 * x);
figure(3);

subplot(2,1,1)

hold off

plot(x, y, 'linewidth’, 3);

set(gca, xlim’, [0 max(x)]);
set(gca,'linewidth’, 3, ‘fontsize’, 18);
xlabel('time (seconds)’);

z = abs(fft(y));

subplot(2,1,2)

hold off

stem(0:49, z(1:50)."2, 'linewidth’, 3);
set(gca,'linewidth’, 3, ‘fontsize’, 18);
xlabel('frequency (Hz));

set(gcf, 'PaperUnits’, 'centimeters’)
set(gcf, 'PaperPosition’, [0 0 20 11.5])
print(-depsc’, 'Plots/fft_sin_3.eps’);
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When two close notes are played together, we hear “beats”. The beat frequency is
|f1 — f2|. This phenomena is often used in tuning instruments (e.g. guitars). In the above
graph the beat frequency is obvious in the picture (and would be audible at one Hz).
While the beats can be useful, it is also important to understand what frequencies are
present in the signal, and in fact there is no signal at 1Hz, as we can see in the power spectrum.

% file: beats.m, (c) Matthew Roughan, Wed Jul 23 2008
N = 10;

x = (0:0.01:N);

fl=71 % frequency 1 = 7 Hz

f2 = 8; % frequency 2 = 8 Hz

y = sin(2 *pi*fl * x + pi) + sin(2 *pi *f2 * x);

figure(2);

subplot(2,1,1)

hold off

plot(x, y, 'linewidth’, 3);
set(gca,'xlim’, [0 max(x)]);

set(gca, linewidth’, 3, ‘fontsize’, 18);
xlabel('time (seconds)’);

z = abs(ffi(y));

subplot(2,1,2)

hold off

stem((0:99)/N, z(1:100).”2, 'linewidth’, 3);
set(gca,'linewidth’, 3, ‘fontsize’, 18, ’xtick’, [0:10])
xlabel('frequency (Hz));

set(gcf, 'PaperUnits’, ‘centimeters’)
set(gcf, 'PaperPosition’, [0 0 20 11.5])
print(-depsc’, 'Plots/beats.eps’);

Transform Methods & Signal Processing (APP MTH 4043): ezl — p.17/61




Example: ECG

2150
2100
2050
2000

19500 2 4 6 8 10

time (seconds)

71']All"llll‘lllkll‘l‘xﬁl L I
0.5 1 15 2 2.5 3
frequency (Hz)

OFRNWAOU
T
1

o

Transform Methods & Signal Processing (APP MTH 4043): lezl — p.18/61

Sound and Waves

Sound is formed from pressure waves in the air

» the disturbance propagates as the successive
compression and rarefactions

» the number of compression-decompression
sequences arriving at the detector during a chosen
time interval is called the frequency

» The time interval between successive maximal
compressions is called the period.

» The wavelength is the velocity divided by the
frequency.

» At ground level and at 0° C the speed of sound is
approximately 331.5 metres per second

Transform Methods & Signal Processing (APP MTH 4043): lezil — p.19/61

How does the machine that goes “beep” in a hospital work? Its looking for the period of your
heartbeat, looking at a signal like this.
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The wavelength of the note we call A=440Hz. proves to be about 753 mm (about 30 inches).
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Pitch

Equal Temperament scale. Tuning Pitch: A=440Hz

Note Frequency (Hz)

A 2750 55,00 110.00 220.00 440.00 880.00 1760.00
AH# 29.13 5827 11654 233.08 466.16 93232 1864.65
B 30.86 6173 12347 24694 49388 98776 197553
C 3270 6540 130.81 26162 523.25 1046.50 2093.00
CH# 34.64 69.29 13859 277.18 55436 1108.73 2217.46
D 36.70 7341 14683 293.66 58733 117465 234931
D# 3889 7778 15556 31112 62225 124450 2489.01
E 4120 8240 164.81 329.62 659.25 131851 2637.02
F 4365 8730 17461 34922 69845 139691 2793.82
F# 46.24 9249 18499 369.99 739.98 147997 2959.95
G 4899 9799 19599 39199 78399 156798 3135.96
G# 5191 103.82 207.65 41530 830.60 166121 3322.43
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Equal temperment scale

Not the only possible scale

convenient, because easy fo change key
each octave doubles the frequency

12 semitones per octave

equal spacing on a log scale

vV v v v VvVY

ratio between semi-tones is equal (hence the name
of the scale), and therefore the ratio must be the
12th root of 2 ~ 1.0595, e.g. ratio of D# to D

38.89/36.70= 2%/12 = 1.0595
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Harmonics

Real instruments don't generate pure sin waves

Vibrational resonances at fundamental frequency f and
at 2f,3f,...
We hear a mix of these harmonics
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Harmonics of A (440 Hz)

Harmonic Frequency Normalized Note name how close
1 (fundamental) 440Hz 440Hz A 100%
2 880Hz 440Hz A 100%
3 1320Hz 660Hz E 100%
4 1760Hz 440Hz A 100%
5 2200Hz 550Hz C# 99%
6 2640Hz 660Hz E 100%
7 3080Hz 770Hz G 98%
8 3520Hz 440Hz A 100%
9 3960Hz 495Hz B 100%
10 4400Hz 550Hz C# 99%
11 4840Hz 605Hz D 103%
12 5280Hz 660Hz E 100%
13 5720Hz 715Hz F# 97%
14 6160Hz 770Hz G 98%
15 6600Hz 825Hz G# 99%
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” Harmonie universelle, contenant la théorie et la pratique de la musique”, published in Paris
in 1636-7 by Franciscan friar Marin Mersenne, contains a bunch of good stuff:

» measured time of return of echos, and computed speed of sounds (accurate to within
10%)

» for a string under constant tension, frequency varies inversely as the length

» for a string of constant length, frequency is proportional to the square root of the
tension

» for given length and constant tension, frequency varies inversely as the square root
of the mass/unit length.

» determined frequencies of notes, by measuring slow cases, and using the
relationships

Harmonics of vibrating string proposed by Daniel Bernoulli (1755).

http://www.dolmetsch.com/poshistory.htm
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Notice that the Harmonics are not all the same note. Also, the equal temperment scale doesn’t
exactly match the frequencies of a set of harmonics (the harmonics occur at powers of 2 of
the fundamental frequency) — some are off by a few percent.
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http://www.dolmetsch.com/poshistory.htm

Musical Scale

A table showing the A scale
Frequency
Interval name | Ratio
Fundamental | 1/1
Second | 9/8
Third | 5/4
Fourth | 4/3
Fifth | 3/2
Sixth | 5/3

Harmonic
Example equivalent
A (440) 1st
B (495) 9th
C# (550) | bth and 10th
D (586) 11th
E (660) 3rd and 6th
F# (733.3) | 13th
Seventh | 15/7 G# (825) | 15th

Octave | 2/1 A (880) 2nd, 4th, 8th

All of the notes in the scale fall (almost) on harmonics,
and most of the harmonics are represented in the scale.

Transform Methods & Signal Processing (APP MTH 4043): ezl — p.24/61

Tone/Timbre of instrument

Tone/Timbre of instrument is in part determined by

proportion of different harmonics. <% <

time (seconds)

Cos wave
1
05
0
-05
b 0.01 0.02 0.03 0.04

0.05

Fourier transform
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Its all very confusing (to me at least), but the important point is that the harmonics sound
good together. They are “consonant”.

The only two harmonics omitted here are the 7th and 14th. | don’t know why, but maybe
its because these harmonics differ from their equal temperment pitch by the more than most
(98%), though F# and D are worse.

Transform Methods & Signal Processing (APP MTH 4043): ezl — p.24/61

A pure cosine wave has a very simple spectral representation, but a strange artificial tone.

%

% file: cos_wave.m, (c) Matthew Roughan, Sun Aug 1 2004
%

fs = 44100;

T =25

x = (Ufs *T)fs;

f = 110;

y = 1xcos(2 *pi *f*x);

figure(10)
plot(x,y, 'linewidth’, 3);
set(gca, 'xlim’, [0 0.05]);

set(gea, 'linewidth’, 3, ‘fontsize’, 18);

xlabel('time (seconds)’);
print(-depsc’, 'Plots/cos_110.eps’);

z = ffty);

w = abs(z)."2;

w = fftshift(w);

q = (-length(w)/2+1:length(w)/2)/T;

figure(1)
semilogy(q, w, 'linewidth’, 3);

set(gea, ‘linewidth’, 3, ‘fontsize’, 18);

set(gca, 'xlim’, [0 500]);
xlabel('frequency (kHz)');

print('-depsc’, 'Plots/cos_110_fft.eps’);

set(gca, 'xlim’, [-500 500]);
xlabel('frequency (kHz)');

print('-depsc’, 'Plots/cos_110_fft_even.eps’);

wavwrite(y, fs, 'Plots/cos_110.wav'’);
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Tone/Timbre of instrument

Tone/Timbre of instrument is in part determined by
proportion of different harmonics. <)

Note on a guitar Fourier transform
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Application: Pitch Estimation

» Autotuning guitar
http://www.technologyreview.com/
Infotech/19462/pagel/

> much of article is on mechanics
> somewhere we must be estimating pitch of a
string

» Simple approach is to use Fourier transform

> refine using “harmonic comb”
http://ccrma.stanford.edu/~jos/
SimpleStrings/Plucked_Struck_String_
Pitch_Estimation.html

> look for the fundamental frequency fo such that
the sum of (log) power in the fundamental and
harmonics is maximized.

Transform Methods & Signal Processing (APP MTH 4043): lezil — p.27/61

A Guitar note has a much more complicated spectrum, including a range of harmonics. The
selection of harmonics determine the tone/timbre of the instrument (along with other features
such as the transient nature of the notes, i.e. the fact that different harmonics may die out at
different rates).

Fourier analysis gives us a window into these phenomena.

%

% file: guitar_pluck.m, (c) Matthew Roughan, Mon Jul 24 2006
%

file = 'My Song 2.wav’;

[x, Fs, bits] = wavread(file);

dt = 1/Fs;

fprintf(file = %s\n’, file);
fprintf( sampled at %d bits at %d Hz\n', bits, Fs);
time = (L:length(x(:,1)))/Fs;

figure(2)

plot(time, x(:,1), 'linewidth’, 3);
xlabel('time (seconds)’);

set(gca, 'xlim’, [0.22, 0.36]);

set(gca, 'linewidth’, 3);

set(gca, 'fontsize’, 18);

print(-depsc’, 'Plots/guitar_A_110.eps’);

%%%% choose a segment of the input data
temp = x(:,1);
temp = temp - mean(temp);

y = fit(temp);
K = length(temp);
A B oy Y
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figure(4)

Simple version, choose fy that maximizes

K
> log|X(kfo)|
k=1

where K is the number of harmonics to include and X is the Fourier transform of the signal.
Care must be taken to choose K, and skip any missing harmonics.
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Example spectrogram

frequency (Hz)

Spectrogram shows frequency content over time.
This example is the Guitar pluck we heard earlier.
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Example spectrogram

Most sounds aren't continuous, they are transient
06 T T T T

0.4
0.2
0

signal

-0.2
-0.4

1 1 1 1

5 10 15 20 25 30
time (seconds)

Dark side of the moon: Breathe clip 0
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The clip of sound is from the first 30 seconds or so of “Breathe” from the album “The Dark
Side of the Moon”, by Pink Floyd.

It is a perfect clip, because it incorporates mid-term periodicities, and sounds ranging from
mechanical to musical, and we can see the difference when we examine the spectrogram.

Transform Methods & Signal Processing (APP MTH 4043): ezl — p.29/61




Example spectrogram

s 10 15 20 25 30
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Dark side of the moon: Breathe clip St
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Application: Changing pitch

Sometimes we want to change pitch
» anonymizing an interview on TV (Vocoder)
» changing the speed of a recording o make writing a
transcript easier
> changing speed is easy
> but when you double the speed, you double the
frequency

> heed some way to correct for the change in pitch

Example:
» Clip from Bernard Fanning “Songbird”, ¥/

» With the pitch increased by a factor of 2 <
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Vocoders
http://www.ee.columbia.edu/ dpwe/resources/matlab/pvoc/
http://www.musicdsp.org/showone.php?id=126
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Application: Compression

» raw audio, image and video files are large
» want to compress them

» best compression ratios allowed if we drop some
data

» want tfo make sure that the data we drop is not
perceptually important

» examples:
> JPEG images
> MP3 audio

» both do compression in the frequency domain
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Application: Acoustic fingerprints

» How could we get a computer to identify a song?

> last.fm can use fingerprints to ID songs, because

ID3 tags in songs (put in by users) often have
typos www.last.fm

» Very large database of possible songs
> fingerprint needs to be much smaller than song
> even smaller than compressed song

» how do we deal with degradation

> introduced noise
> song might have been compressed

> maybe not all of song is played/heard
» natural to do it in the frequency domain
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An example patent: “Audio fingerprinting system and method”, United States Patent
7,013,301, F. Holm, W. Hicken, March 14, 2006,
http://patftl.uspto.gov/netacgi/nph-Parser?Sect1=PT 02&Sect2=
HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G &I=50&co0l1=
AND&d=PTXT&s1=7,013,301.PN.&OS=PN/7,013,301&RS=PN/7  ,013,301

Another example: “Audio signal feature extraction”, European Patent EP1403783, MORI

YOSHIHIRO, OGAWA TOMOKI, MOCHINAGA KAZUHIRO, 2004-03-31,
http://swpat.ffii.org/pikta/txt/ep/1403/783/

Both use frequencies present in a song to fingerprint it.
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Application: Transcription

Allegri's "Miserere " 43}} was written in 1638, but by
order of the Pope, it could only be sung in the Sistine
Chapel during Easter week. About 140 years later a
teenager heard the piece, and wrote the score from
memory. There is some argument about whether he
released it, or someone else did, but this is the perhaps
the first example of teenagers vs the music industry.

» transcription is the process of taking audio, and
converting it to written music (a score).

» it furns out to be jolly hard to get a computer to
transcribe a general piece of music - we need to
deal with transients.
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Some 2D integral transforms

» Radon Transform (see also Hough transform)
F(p,0) = /Z/Z f(x,y) 8(p — xCoB — y'sin) dxdy
» 2D Fourier transform (can go to N-dimensional)
F(u,v) = /0:0 /Z f(x,y)e 2 gy dy
» Hankel transform (see also Fourier-Bessel)
F(uv) = /Z /Z F(r)e 210w il

Fourier trans. with a radially symmetric kernel
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An example: Radon transform

F(p.0) =/Z/Zf(x,y)é(p—xcos@—ysine)dxdy

2 2
(pi/4,sqrt.
15 1
> 1 a0
0.5 -1
% 1 2 D pil2 pi
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An example: Radon transform

Radotitransformation

0
-B0 -40 -200 0 20 40 EO
tha

http://eivind.imm.dtu.dk/staff/ptoft/Radon/Radon.ht ml
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Other integral transforms

vV vvyyVvyy

vy

Wavelet transform, H-transform, Haar-transform
Z-transform

Laplace-Stieltjes and Fourier-Stieltjes
bilateral-Laplace (/%)

Buschman and Mehler-Fock ftransforms, (power
functions and Legendre polynomials)

G- and Narain 6-Transform (Meijer G-function)
Hartley transform (cas = sin + cos)

Hankel (Fourier-Bessel), Kontorovich-Lebedev and,
Meijer transforms (Bessel functions)

Stieltjes transform (gamma function and power)
Abel transform (generalization of Hilbert transform)
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Relationships between transforms

vV v vy

v

Cosine transform = O{Fourier transform}
Sin transform = O{Fourier transform}
Laplace transform related o Fourier transform

Fourier transform related to Fourier series (not
the same)

Wavelet transform related to Short Time Fourier
transform

Others ...
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Basis functions

How do you represent a function?

» a function is a weighted sum (or integral) of basis

functions
f(t) = Zakgk(t)

F(t) = / a(s)g(t,s)ds
» simplest case: a(s) = f(s), g(t,s) =3(t—s)
» a transformation is a change of basis
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Linear algebra example

How do you represent a vector?

» avector is a weighted sum of basis vectors

f=Zakgk

» simplest case: & = f, gk=(0,...,0,1,0...,0)!

» a transformation is a change of basis

Af = Zbkhk

» note that discrete-time (finite) case, is just the
same
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Examples of integral transforms

Name basis functions

Identity Delta functions d(s—t)

Fourier Complex exponentials e7'% = cogst) —isin(st)
Laplace Real exponentials e

Hilbert Hyperbola 2+

Mellin Power functions t* 1

Fourier Cosine

Cosines coq &)
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Properties of basis functions

orthogonal / bi-orthogonal / orthonormal
redundancy, efficiency of representation
finite/infinite support

smoothness, regularity

decay

size of side lobes

vV vy Vv vV VY VY

number of vanishing moments
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Properties of basis functions can tell us something about the properties of various transforms.
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Transform properties

existence (when does integral converge)
invertible (can we get back the original signal)

>
>
» complexity (how much work to compute)
» continuous vs discrete

>

how does the transform behave when we change the
original signal?

> e.g. stretch the original signal

> e.g. convolve two signals

» leakage (related to regularity and decay)
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Inversion

Story of the frog prince

=> transformations can be invertible
Story of Pygmalion

=> not all transformations are invertible
How do we decide which is which?

basis functions must not loose any information
must be a practical way to extract the information
back

» mapping must be one to one (preserves information
in some way)

» orthogonal basis
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The Frog Prince was turned into a frog by an evil witch. A princess restores him with a kiss.

Pygmalion is a mythological figure who fell in love with a statue he made. He prays
to Venus (goddess of love), and she transforms the statue into a human (Galatea).
http://en.wikipedia.org/wiki/Pygmalion_(mythology)

» In some more modern (19th century versions she rejects him)
» Many movies based on the same theme:

> 80’s: Weird Science
> now: BuffyBot (BTVS, "| Was Made to Love You")
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Inversion

Name transform inverse transform

Fourier | F(s) :/oo f(t)e"dt | f(t) :/oo F(s)e 2" ds

Laplace | F(s) = /O “tetd | )= % / " E (9 etds
y—ico

Hilbert | F(s) :/: n(fs(t_)t) dt | f(t) = —/: n(Ft(_S)s) ds

Mellin | F(z2) = /O Tfoetd | f) = / " E (95 ds

Identity | F(s) :/mf(t)é(s—t)dt tt)= [ F(s)8(s—t)ds
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Transform complexity

» mainly an issue for discrete transformations
» crude (numerical) integration not very efficient
» length N data, direct transformation O(N?)
>

Efficient algorithms exist
> Fourier: Cooley-Tukey O(NlogN)
> Wavelet: pyramidal filter bank O(N)
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Key transform property

What do they do?

» Radon highlights lines in an image
» Fourier tfransformation highlights frequencies

» Short Time Fourier Transformation (spectrogram)
transient frequencies

» Wavelet transformation highlights
transient fluctuations

Property they highlight is related to basis functions.
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What will we miss?

Too muchl!

» analogue devices (antenna, optical devices, analogue
filters)

» Transform techniques for solving physical problems
(e.g. DEs) where solution can be written in terms of
basis functions, e.g. heat diffusion, vibration, ...

» other transforms: Laplace, Laplace-Stieltjes,
Fourier-Stieltjes, wavelet packet, framelets, lifting
schemes, ...

» too much else, ...
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Basic terminology

This course relies on your knowledge of complex
numbers, and basic calculus. We will briefly recap some
of the assumed knowledge here, in part to ensure we are
aware of the notation that will be used in this course..
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Complex numbers

Xx=a+ib, where i=+—1
real part of xis 0(x) =a
imaginary part of x is O(x) =b
complex conjugate x* =a—ib
Hermitian of a complex matrix A= [g;] is A" = [a].

vV v.v.v Y

identities
> €% = cogx) +isin(x)
> cogX) = 3 (X+e ™)
> sin(x) = 2 (€*—e ™)
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You should have gained a working knowledge of complex numbers before starting this course
— if not, please see me as soon as possible.
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Simple signals

A
> unit step: !
0, t<0
=< _ _
u(t) 1, t>0 Tt
A
» rectangular pulse: 1
r(t)=u(t+1/2)—u(t—1/2).
=t
» sign (signum) function: A
-1, t<O0 1
t) = ’
sgrt) 1, t>0
:t
-1
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Delta "function” (t)

definition
o(—t) = at)
t
/_ooé(S)dS - U(t) limit spike
/ FOB(t—to)dt = f(to) -
consequences 5(t - to)

5(t) = Ofort#0
/me‘)(t)dt =1 b

—00

Transform Methods & Signal Processing (APP MTH 4043): leztil — p.53/61

Transform Methods & Signal Processing (APP MTH 4043): ezl — p.52/61

The delta function(al) was introduced by Physicists well before it was accepted by
mathematicians. Indeed it is often named the “Dirac delta function” after its creator, the
famous physicist.

Operating with deltas is actually pretty simple, once one absorbs the definition (though the
theory is a bit more complex).
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Some useful functions: sinc

The sinc function

sincx) = { S"L‘X i)fﬂ)-u(;ﬁise
™ ’
Properties:
» symmetric L , , , ,

» [© singdx)dx=1 ogf - |- - —
NI R B
- mlene(Z) <o
Ok 1 3 5
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Signal characteristics

» even: X(—t) =x(t)
» odd: x(—t) = —x(t)
» any signal X(t) = Xever(t) + Xodd(t) Where

Yeverlt) = % IX() 4 X(—1)] and Xoga(t) = % X(t) = X(—t)]

» Hermitian: x(—t) = x*(t)

» periodic: x(t+nT)=x(t) foranyn=1,2,..., and
some T > 0.
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The sinc function will be often used because it is the Fourier transform of a rectangular pulse.

There are multiple definitions of the sinc function: we use the normalized sinc function, but
there’s at least one other possibility:

» normalized sinc:

Smo(x)_{ 1, ifx=0
ST otherwise,
» unnormalized sinc
. 1 ifx=0
singx) = ; .
{ . otherwise,

Note that sinc is an abbreviation of the full name “sine cardinal”.
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Even signals

\/\ WA
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Odd signals

X(—t) = =x(t)
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Hermitian signals

Real

Imaginary
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Periodic signals

X(t+nT)=x(t) forany n=1,2,...

A

Transform Methods & Signal Processing (APP MTH 4043): lezil — p.59/61

Real part is even
Imaginary part is odd
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Frequency terminology

The minimal value T =Ty > 0 for which periodic signal
X(t+nT)=x(t) foranyn=1,2,...,and some T >0 is
called the fundamental period, and has units of seconds.

T = period measured in seconds
f = 1/T = frequency measured in Hz
w = 2mnf measured in radians per second
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Simple transformations

» time reversal y(t) = x(—t)

» time scaling y(t) = x(at)

» time shift y(t) = x(t —to)

» amplitude scaling y(t) = Ax(t)

» amplitude shift y(t) = B+x(t).

» for complex signals x(t) = a(t) +ib(t)
> real part O(x(t)) = a(t)
> imaginary part O(X(t)) = b(t)
> conjugate x*(t) = a(t) —ib(t)
> magnitude |x(t)| = y/a(t)?+ b(t)?
> phase angle 6(t) = arctarib(t)/a(t))
> X(t) = |x(t)| €V
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The unit “Hz” or Hertz refers to cycles per second.
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