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Discrete signals

In theory there is no difference between
theory and practice. In practice there is.

Yogi Berra
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This lecture considers real signals (which are almost all discrete) and the Discrete Fourier
Transform (DFT), and its properties.
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Discrete signals

Real signals (these days) are discrete

» Moore's law (speed of digital hardware increases by
a factor of two every 18 months, or the number of
transistors on a chip doubles, or the cost halves).

“Cramming more components into integrated circuits”, Gordon
E. Moore, Electronics, Vol. 38, No. 8, April, 1965.

» Easier/cheaper to use standard DSP solution.

e.g. CD players — we can get nominally better
results from a LP record, and a really good
player, but CD's cost orders of magnitude
less for almost indistinguishable results.

» If it isn't cheap enough today, it will be in a year.

Transform Methods & Signal Processing (APP MTH 4043): lexfi8 — p.3/80

Moore's Law

Moore's law: the speed of digital hardware increases by
a factor of two every 18 months, or the number of
transistors on a chip doubles, or the cost halves.
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Actually looks more like a factor of 2 every 2 years.
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Intel’s pages on Moore’s law:
http://www.intel.com/technology/mooreslaw/index.htm
ftp://download.intel.com/research/silicon/moorespap er.pdf

Other links to Moore’s law:
http://en.wikipedia.org/wiki/Moore’s_law

http://www.thocp.net/biographies/papers/moores_law. htm
http://www.firstmonday.org/issues/issue7_11/tuomi/
http://www.hyperdictionary.com/computing/moore’s+la w
http://www.physics.udel.edu/wwwusers/watson/scen103 f/intel.html

http://www.ziplink.net/~Iroberts/Forecast69.htm
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Gates's law

Gates's Law: The speed of software halves every 18
months.

Gates's law does not apply to DSPs (they use small
embedded OSes).

Parkinson's Law of Data: Data expands to fill the space
available for storage

Parkinson's law of data does typically apply. As chips get
faster, we sample at higher resolution, and faster
sampling rates...
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Real signals

In theory there is no difference between
theory and practice. In practice there is.

Yogi Berra
Real data is
» finite (integrals convergence much easier)

» discrete time
» discrete valued
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Gate’s law isn't entirely a joke, e.g. see
http://hubpages.com/hub/_86_Mac_Plus_Vs_07_AMD_Dual Core_You_Wont_
Believe_Who_Wins
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Discrete time

» Real signals are discrete-time

» We can sample a continuous function to get a
discrete approximation
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Quantization: discrete-value

» Real signals are discrete-valued

» Analogue to Digital conversion: sample in time, and
quantise
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The x-axis is discretised, but the y values are still exact. We have sampled the function at a
set of sample points.
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Now the y-axis is also discretised, so now we only have an approximation of the function,
recorded only at certain time-points called sample points.
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Approximation

» Faster sampling => better approximation
» More details later
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Approximation

» Finer quantization => better approximation

» More details later

Transform Methods & Signal Processing (APP MTH 4043): lexi8 — p.10/80

Given a set of sample points, we can try to reconstruct the original continuous signal in a
number of ways (this is called interpolation). The illustration is a simple (but crude) method
where we assume the signal takes the value of the sample until we get to the next sample.
This is sometimes called nearest neighbor, or piecewise constant interpolation.
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Approximation

» Longer data sets => better approximation
» More details later
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Sampling

Sampling produces a new time series, with discrete
index, e.g.
x(n) = f(ntg)

where ts is the sampling interval

The sampling frequency is fs= 1/t
e.g. sampling frequency for CDs is 44.1 kHz
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The plot in the example shows a segment of a cosine function. However, over the range
displayed the function looks constant, or maybe there is a small linear decrease.

Transform Methods & Signal Processing (APP MTH 4043): |ez8 — p.11/80

Transform Methods & Signal Processing (APP MTH 4043): lexi8 — p.12/80




Aliasing

A critical issue for sampling is aliasing

vV

Samples might be caused by different underlying signals.
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Another example of aliasing

- K
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The plot shows three different sinusoids, but each produces exactly the same sample values
at the points shown. This type of ambiguity is called aliasing (think of Superman’s alias —
Clark Kent — they are really the same person).
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Aliasing: Time domain view

Signal with frequency fo, given by f(t) = sin(2mtfot)
Sampling interval ts, and sampling frequency fs = 1/ts.
Sampled signal is x(n) = f(nts) = sin(2rtfonts)

vV v. vy

We can always add 2rim (where mis an integer) to a
sin function without impact, e.g.

x(n) = sin(2mtfonts)
= sin(2mnfonts+ 21mm)

. m
= sin (21'[ [fo-k n_ts] nts>

= sin(2m[fo+ fk]nts) where m=kn.

So there is an ambiguity in x(n) about frequencies
fo+ fsk for integer k.
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Aliasing: frequency domain view

Consider a delta train or Dirac comb defined by

d(t) = i 3(t —n)

n=—oo

We can consider sampling of a function f(t) to be
equivalent to taking the product with a delta train, e.g.

X(t) = d(t/ts) f(t)

From the convolution, and the duality theorems, we can
see that the FT of x(t) will be the convolution of the FTs
of d(t) and f(t).

The FT of the delta trainis F{d(t/ts)} = |ts|d(tsS)
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Poisson summation formula sketch of why F{d(t/ts)} = |ts|d(tsS)

D(s) = ZF{dt)}

o

/:0 Y dt—me ™ d

142 05[e 2™ 4 7™
n=1

= 142 cos(2rmsn)
&

For san integer, each term in the sum is 1, and so the sum diverges.
For s, not an integer, the sum looks like the integral ™ cos(x) dx = 0.
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Delta train

A train of delta functions d(t/ts) = S, 0(t/ts—n) has
Fourier transform which is also a delta train, e.qg.

F{d(t/ts) } = [ts|d(tsS)

L
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Aliasing: frequency representation

x(t) = d(t/te) f (t) = X(5) = d(tss) * F (5)

Convolution of a delta train with a function looks like:
2,
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The above signal might variously be called a delta train, a delta comb, a Dirac comb, a Dirac
train or some other variant. Comb comes from the shape (like a comb), whereas train comes
from the fact that we have a train of deltas in sequence.

Bracewell also uses the Cyrillic letter shah, LU, because of its shape.
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Because the blocks aren’t overlapping, we can use the fact that we know the blue spectrum
is “band limited” and restrict out attention in the Fourier domain to just this part.
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Aliasing: frequency representation

X(t) = d(t/ts) f(t) = X(s) = d(tsS) x F(S)
Convolution of a delta train with a function looks like:
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Nyquist sampling theorem

Assume the spectrum of the signal is zero above a

critical frequency f.. We call this the bandwidth of the
signal.

For sampling frequencies fs > 2f;, the spectra above
won't overlap. If fs < 2f; aliasing becomes a problem.

» the critical sampling rate referred to by, e.g. the
Nyquist rate, or Shannon (1949) or Whittaker
(1935) sampling theorem.

» the sampling frequency must be greater than twice
the highest frequency present in the signal

» need to bandlimit the input signal before sampling
» bandwidth does not need to be centered on zero Hz.
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Even though the input signal is band limited, the resulting spectra overlap, because the
maximum frequency fc > 1= fs/2. The overlapping is a problem which we must avoid.
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Example

Analogue signal with central frequency 20 MHz, and 5
MHz bandwidth.

analogue signal spectrum

- B=5MHz
o >
=
o
o

=25 -20 -156 -10 -5 | & 10 15 20 25

frequency (MHz)
fe

To include entire spectrum, we need to sample at
2x225=45MHz.
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Example: Sample at 17.5 MHz

analogue signal spectrum
B=5MHz

power

—25 -20 -15 -10 -5 | 5 10 15
frequency (MHz)
sampled signal spectrum

25

-25 -20 —15 -10 -5

- > < >
fs fs=1 7.5MHz

5 10 15 20
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Example: Sample at 15 MHz

analogue signal spectrum

- B=5MHz
o >
2
o
o
-25 -20 -15 -10 -5 | 5 10 15 20 25
frequency (MHz) ?
sampled signal spectrum
-25 -20 -15 -10 -5 25
- > < :
A fs‘=15MHz

Transform Methods & Signal Processing (APP MTH 4043): lexi8 — p.23/80

Example: Sample at 11.25 MHz

analogue signal spectrum

B=5MHz
>

power

25 -20 -15 -10 -5 | 5 10 15 25

frequency (MHz)
sampled signal spectrum

=25 -20 -15 -10 = 20 25

. )4 >
ks I f,=11.25MHz
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Example: Sample at 7.5 MHz

analogue signal spectrum
B=5MHz

power

—25 -20 -15 -10 -5 | 5 10 15
frequency (MHz)
sampled signal spectrum

Transform Methods & Signal Processing (APP MTH 4043): le=B — p.25/80

Bandlimiting

When sampling from real signals, one must bandlimit the

input!

f(t) =

Analogue Analogue to
Bandpass =1 Digitial (A/D) = x(N)
Filter Convertor

Shouldn't push the boundaries with sampling, and filters
» analogue filter might not be ideal
» sample clock generation instabilities
» imperfections in A/D quantization.

Hence, include guard bands around bandwidth of

interest.
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Some more sampling theory

Shannon Sampling Theorem:

“If a function f (t) contains no frequencies higher thahcycles
per second, it is completely determined by giving its orthsaat
a series of points spacétl/2W) seconds apart.”

» so we can reconstruct f(t) from its samples
> if the signal is bandlimited
> samples spaced (1/2W)
> Hence Nyquist result
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Shannon theorem

Proof sketch: Assume function is bandlimited so
F(s) =0 for|s| >W, then the IFT is

F(t) = /ZF(s)eiZTH ds— /VVVVF(s)ef'ZTfSt ds

If instead, we make, F periodic, with period 2W then we
can find a Fourier series for it, e.g.
Fs= 5 Ae™VW

N=—0o

where,

1w CimsW e L n
An_ﬂ/WF(s)e ds_ﬂf(ﬁ)
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See:
Claude Shannon, “Communications in the presence of noise”, Proc.IRE, 37, pp.10-21, 1949.

H.Nyquist, “Certain topics in telegraph transmission theory”, AIEE Trans., 47, pp.617-644,
1928.
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Shannon theorem

Proof sketch:
We can represent F(s) perfectly with the Fourier series
coefficients A, but these are just proportional to the

function sampled at uniform intervals, e.g. A, O f (5).

Hence, the samples completely define the FT F, and
hence the function f. O
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Shannon interpolation

Reconstruction of original signal from IFT

f(t) = /_ VVVVF(s)eiZTH ds

_ /W iAneims/WeiZTlstds

“Wnoo

— Z An/oo r(S/Z\A/)eiZTIS(—t+n/2\N) ds

= 3 awa [ r(-gdmennas
n=—o —®

= if(%)sinc(sz—n)

n=—oo
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The last step follows because
» The IFT of r(s) is sinc(t)

» Whent =m/2W for man integer, then 2Wt —n is also an integer m—n. Note that
sindm—n) = dm.

» Hence at those points we get

f(m/2w) = i 2WAsinc(2Wt —n) = z 2WARSm = 2WAn

n=—co n=—oo
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Shannon interpolation

Assume we sampled at the Nyquist rate, i.e. fs=2W, or
ts=1/2W, then the sample points would be

(o)
The summation

f(t) = % f(%)sinc(zwt—n)

N=—o0

The above formula represents a "convolution” of the
sampled signal with a sinc function. We will learn about
convolutions later, but note that this convolution acts to
(perfectly) filter out high frequencies.
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Digital to Analogue converter

Interpretation

» convolution with sinc
» equivalent to ideal analogue low-pass filter

A A
samples reconstructed function
2SN ideal
‘— ‘_ o analogue
s "_ lowpass
_e—

Y

» this is essentially what a Digital fo Analogue
converter tries to do

» have to build analogue filter — hard to make it ideal
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A Digital-to-Analogue converter is sometimes abbreviated to a D-to-A converter, or DAC.

The samples are read into the DAC, which must first convert these into continuous voltages.
This is typically done using a type of “store and hold” operation. The sample value is held
until the next sample, so that the output is a piece-wise constant curve (that looks a bit like
a staircase). The mechanism to perform this step is sometimes called a latch, because it
latches onto values.

The green (dashed) curve shows the original signal, which has been sampled at the blue
dots. The new analogue signal is represented by the blue line segments.

Obviously, the staircase curve is only a crude approximation to the original smooth curve. We
get back the original curve by convolving filtering the signal with a (preferably) ideal low-pass
filter, that smooths the curve, and removes the nasty harmonics introduced by the steps.

Perfect analogue filters are unrealizable. Even good analogue filters are expensive
(compared to digital filters) so often digital tricks (e.g. upsampling) are used before the DAC,
to make this step easier.

For an intuitive description of some of the issues see
http://www.audioholics.com/education/audio-formats- technology/

exploring-digital-audio-myths-and-reality-part-1
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Quantization: discrete-value

Quantise real number values so they can be represented
on a computer (or DSP) in a binary format. This is the
essence of “digital” technology.
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Dynamic range

Dynamic range expresses the range of values we can
represent in our digital format, e.g.
» assume fixed point representation with b bits.
» largest value representable is (2° — 1)
» smallest value representable is &

» dynamic range = 20log,, (Zbgl)a ~ bh20log,2 = 6.02b dB
» 6 dB per bit

CD's use 16 bit fixed point, so the dynamic range of a CD
recorded sound is approximately 16 x 6 = 96dB.

Compare to somewhere between 50-70 dB for LPs,
depending on the quality of the pressing.
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Some background: all digital data is represented as numbers, e.g. the data on a CD is represented as
numbers. The numbers are usually represented in some binary format, for instance, we might write a
number in terms of binary “bits” where each bit is either 0 or 1

0 = 000
= 001
= 010
= 011
100
= 101
= 110
= 111

N o oA~ wN R
Il

We would often use an extra bit at the start to indicate sign, e.g.

4 = 0100
-4 = 1100

Note that, each number can also be mapped to a new value, e.g. for the uniform quantization shown
above, the values might be mapped by taking 4 x n where n is the number represented by the binary digits.
Note the above approach is called “fixed point”, which is often used in DSP in preference to “floating point”
numbers often used more generally. Arithmetic for fixed point is easier, and there are some other good
arguments for using it when you have a limited number of bits.
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There is a fair bit more of interest here — we will talk more about it close to the end of the lecture.

For instance, there is some confusion about the role of the signal representation in the
above calculation, for instance CD’s use 16 bit fixed point, with one bit used for sign,
and 15 bits for value so maybe the dynamic range for CDs should be 90dB, e.g. see
http://www.hydrogenaudio.org/forums/lofiversion/ind ex.php/t45165.html

The real answer is that the above calculation is a clumsy approximation, but it is often used as
a rule of thumb to get a ball-park figure. The figures quoted for CD dynamic range vary from
98dB (using a slightly better approximation to the above) to much significantly lower values
using more accurate modelling of the possible signals you can obtain with real hardware.
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http://www.hydrogenaudio.org/forums/lofiversion/index.php/t45165.html

Dynamic range: examples

When the signal just fills the range of possible values,
the maximum amplitude of the signal will be (2° —1)3.

1.2F

0.9F 1
0.6f 1
0.3f, 1
-0.3F 1
-0.6} 4
-0.9F 1
-1.2} 4

The smallest signal (other than zero) that we can
represent has maximum amplitude d.

1.2F
0.9F
0.6f

0f
-0.6f
-1.2F

0 1000 2000 3000 4000 5000 6000
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Dynamic range of the human senses

Human senses aren't really digital, but for purposes of
comparison we will consider them here. They are pretty
amazing.

» We have already seen that the human ear has about
130 dB dynamic range.

» The human eye has about 100 dB dynamic range.
Although the dynamic range is very large, its important
to note that our senses can't achieve this range
simultaneously.

» Loud sounds can mask quieter sounds

» Our eye needs time to adjust to the level of
brightness - the range of contrasts is can
simultaneously perceive is much smaller.

Transform Methods & Signal Processing (APP MTH 4043): lexi8 — p.36/80

Photographers use terms other than dynamic range (e.g. exposure range, luminosity range,
f-stops, etc.).

http://www.cambridgeincolour.com/tutorials/dynamic- range.htm

Although the terminology was often developed for analogue photography, its sometimes now
used for digital cameras. Most digital cameras use a 10 to 14-bit A/D converter (the CCD),
but typical image formats use 8 bits for each color. The total number of bits is therefore 24,
but in terms of “intensity” we have about 8 bits available.

TVs and computer monitors often use terminology like contrast ratio. For example

Bits | Dynamic range (approx) | Contrast ratio
8 | 48dB 256:1
12 | 72dB 4096:1
16 | 96 dB 65536:1
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Ear:

http://web.mit.edu/2.972/www/reports/ear/ear.html
http://www.silcom.com/~aludwig/EARS.htm
http://hyperphysics.phy-astr.gsu.edu/Hbase/sound/ea rsens.html
http://en.wikipedia.org/wiki/Ear

Eye:
http://en.wikipedia.org/wiki/Eye
Digital Image Processing, Gonzalez and Woods, pp. 35-44.
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Death of Dynamic Range

In recent year there is a trend in Pop music to aim for
“louder” music at the expense of dynamic range.
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Introduced noise

The noise infroduced by quantization is of the order of 6
the smallest value representable value. We want to
compute the SNR (Signal to Noise Ratio).

» assume fixed point representation with b bits.

» noise is of the order of d.

» SNR depends on loading factor.
> lightly loaded, then & is relatively large, and so
SNR is small.
> fully loaded, then SNR is similar to dynamic
range (6 dB per bit).
> overloaded, clipping occurs, and SNR drops.
More accurate calculations in "Understanding Digital
Signal Processing", Lyons.

Transform Methods & Signal Processing (APP MTH 4043): lexi8 — p.38/80

See
http://georgegraham.com/compress.html
http://en.wikipedia.org/wiki/Loudness_war
http://www.cdmasteringservices.com/dynamicrange.htm
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Quantization noise notes

When the signal fully loads range of possible values, the
maximum amplitude of the signal will be (2°—1)3

1.2F

0.9F 1
0.6f 1
0.3f, 1
-0.3f 1
-0.6} 4
-0.9F 1
-1.2} 4

As long as clipping doesn't occur, then the errors will be
of order §, but this is relatively larger for small signals

1.2F
0.9F
0.6f
0.3f 9 @
S can |
T
-0.3F &
-0.6[
-0.9}
-1.2F
0 1000 2000 3000 4000 5000 6000
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Clipping

If the signal is too large we get clipping, which results in
large amounts of quantization noise, e.g.

0 1000 2000 3000 4000 5000 6000

Sometimes clipping is used deliberately to alter sounds,
for example in a guitar amp, clipping is used to produce
distortion (e.g. for heavy-metal music). However,
clipping is usually very bad.
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BTW, guitar amps are often analogue amplifiers, and so don’t “clip” in quite the way described
above.
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Example

Compact Discs (CDs) are recorded

Example: extreme audio

Some audio formats propose 96 kHz sampling, at 24
bits. Ignoring audiophile fantasies, why would I want

» using 16 bits e .
better digital recordings?
> 41z Even if 't hear it, what about in the studi
. » Even if you can't hear it, what about in the studio.
> ilo’i‘rha“r*;hezhrecorﬁ S‘iuc?d fr‘e.quenaes ugg3822'05 In mixing, noise from multiple inputs could add to
z with a theoretical dynamic range ~ : increase noise floor.
> Human hearing goes up to about 15 kHz » When an audio signal is dithered to remove
» LPs have at most 70 dB dynamic range, so CDs structure from the quantization noise, this adds a
should be effectively perfect. little noise, so its helpful to have a lower noise floor
> audiophiles argue about this to start with when r‘ecor‘ding audio.
> some say you lose upper harmonics (not audible » Stereo imaging: requires very finely adjusted
but effect tone), or perhaps you loose transient? time-of-arrival of wavefronts which might be
> but I can't tell the difference distorted by sampling???
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Sampling at 44.1kHz, the sample interval is 1/44100 = 0.000022676 seconds.
» most consumer audio gear will have a noise floor significantly worse than 90dB so

arguing about the precise value given 16 bits is not all that useful. So dynamic
range/quantization noise doesn’t need more than 16 bits.

» 22.05kHz should have all audible frequencies

Sound Pressure | Sound Intensity
Example | Level (dB) (watts/m?)
Snare drums, played hard at 6 inches | 150 1000
Fender guitar amplifier, full volume at 10 inches | 110 0.1
Typical home stereo listening level | 80 0.0001
Conversational speech at 1 foot away | 60 10-6
Quiet conversation | 40 10-8
Quiet recording studio | 10 10-1
Threshold of hearing for healthy youths | 0 1012
For some information on audio equipment, and perception see
http://www.silcom.com/~aludwig/EARS.htm
http://www.cco.caltech.edu/~boyk/spectra/spectra.ht m

Transform Methods & Signal Processing (APP MTH 4043)

At ground level and at 0° C the speed of sound is approximately 331.5 meters per sec-
ond. Soin one sample, a sounds wave will have moved 0.007517007 meters, or about 7.5 mm.

The wavelength of the note we call A=440Hz. proves to be about 753 mm. So the distortion
in one sample at A is about 1% of the wavelength. For a very low note, e.g. A=55Hz, it would
be more like 8%.

Is this enough to impact stereo imaging — | don’t know?

: lex=@B - p.41/80
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Discrete Fourier
Transform

Mathematics compares the most diverse
phenomena and discovers the secret analogies
that unite them.

Jean Baptiste Joseph Fourier
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Discrete transformation

Discrete-time transformation
» Discrete Fourier transform
» Discrete Cosine (and sin) transforms
» Discrete Wavelet transform
» Z-transform
Discrete-value transformation
» Probability generating function
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Discrete Fourier Transformation

Continuous Fourier transform F(s) :/ f(t)e ™o

But note that for a finite length, discrete-time signal, it
can be written as

N-1

X(t) = Z f (nts)d(t — nty)

n=

The Fourier transform can then be written
N—1

X(s) = Z) f(ntg)e 12

n=

The result is simpler o compute, but its still redundant.

Transform Methods & Signal Processing (APP MTH 4043): le=B — p.45/80

Discrete Fourier Transformation

If we have N data points, we would like a (frequency
domain) representation that only needs N data points as
well. Hence no redundancy.

Use s= g for k=0,1,...,N—1and we get
X(k) = Nix(n)e_m”/“,
=
where x(n) are the N discrete samples from the

continuous fime process.

This is the Discrete Fourier Transform (DFT)
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Inverse DFT

DFT

Transform Methods & Signal Processing (APP MTH 4043): lez@B — p.47/80

Examples (i)

Take x(n) = (1,0,0,0)

X(K) = sh-dx(neizwn

X(0) g 12m0/4 =1
X(1) = e 204 =1
X(2) = e 'm0/ =1
X(3) e—i2TIO/4 - 1
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Examples (i) IDFT

Take X(k) =(1,1,1,1)

x(n)

x(0)

So x(n) =

— ERdx(gemen

1 (e—iZTLO/4+e—i2nO/4+e—i2n0/4+e—i2n0/4)

= %(1+1+1+1) =1

— %r( |2r()/4+e—|2m/4+e |2rQ/4+e—|2rl3/4)

= I(1+i-1-10) =0

_ i;:(e |2n0/4+e 224 4 grizmd/4 y g-izne/4)

= 7(1-1+1-1) =0

_ %(e i210/4 | o-i216/4 | o-i2n6/4 | o |2ng/4)
2(1—i—141i) =0

(1,0,0,0)
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Examples (ii)

Take x(n) = (0,1,0,0)

X(K) = sh-dx(meizwn

X(O) e—i2n0/4
X(l) — e—iZTI:I./4
X(Z) — e—i2Tl2/4
X(3) e—i2Tl3/4

e—in/Z
e—in
e—iT[3/2
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Examples (iii)

Take x(n) = (1,1,0,0)

X(K) = sh-dx(meizwn

X(O) e—i2TIO/4+e—i2T[O/4 _ 1_|_1 - 2
X(l) — e—i2T[O/4+e—i2Tﬂ/4 _ e0_|_e—iT[/2 — 1—i
X(Z) — efiZT[O/4_i_efi2T[2/4 — e0_|_efiT[ =0

So X(K) = (2,1—i,0,1+i)
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DFT basis

Once again we are simply changing basis, when we
perform the transform (or its inverse).

The basis functions are a discrete set of sin and cosine
functions.

Note, now we are operating in a finite dimensional space
RN, so we can write the transform as

X = AX analysis

The inverse transform is just
x=A"1X synthesis

Where both x and X are just vectors in RN,
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DFT transform matrix

X = AX
11 1 R |
1 ei2/N e-i22/N e-i2N-1)/N
1 e-i2e/N o-i2m/N e i2r2(N-1)/N
A= 1 ei2ms/N a-i2m6/N e i2m8(N-1)/N
.1 é—isz—l)/N é—iZT{Z(N—l)/N é—iZn(N—l)(N—l)/N
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Examples (i)

Take x(n) = (1,0,0,0)

11 1 1
1 e i2m/4 o-ioe/4  o-i2m3/4

X = 1 gi2mR/4 g-i2w/4  o-i2r6/4
1 e i2MB/4 g-i2r6/4 g-i2n9/4

O O Ok
Y
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Frequency resolution

Frequencies of basis functions are k=0,1,2,...,(N—1)
cycles over the data set. If the data set has N samples
at sampling frequency fs, then its duration is T = N/fs.
To convert from data units to absolute units, we take
k/T =K

Frequency resolution is

» higher sampling frequencies reduce frequency
resolution

» longer data, improves frequency resolution
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Getting units right

Note that absolute frequency depends on sample
frequency fs, so we need to convert.
The component X(m) will correspond to frequency

X(m)=F <mWfs>

Output magnitude of DFT will be amplitude of sin wave
signal A times N/2. Alternative definitions of DFT exist
1 N-1

X(k) = N Zx(n)eiann/N, x(n) _ Nix(k)eiZT[kn/N

1 N—-1 1 N—1

X(k) = \/_N %X(n)eiZlen/N’ X(n) _ W Z}X(k)elznkn/N
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e.g. Given we sample at 20 kHz (i.e. ts = 0.05ms) for 5 seconds (i.e. N =100,000), and we
measure frequency context at X(20), i.e. 20 cycles/measurement period, then the frequency
of the original signal will be
20x 20,000
100000 ~ 2H?

Note that we care more about relative magnitudes, not absolute values, so the different
scalings in the DFT don'’t really matter. Except on class exercise solutions :-)

Transform Methods & Signal Processing (APP MTH 4043): lexi8 — p.56/80




Matlab

Note, indexes in Maﬂab run from 1 to N (not 0 to N—1).

fft (x(n)) = zx g ZMk-D-/N " —1 . N.
1 k 2n(k—1)(n—1)/N

i _ - T n— _

ifft (X(K)) = x( NZ k)€ , n=1,...N.
X(1) is the DC term, X(n) is the fs term. To plot
symmetric power spectrum use, e.g.

f s = 1000

f 0 = 100;

x = L1L:1/f s:10;

y = sin(2 *pi *f_0 *x);

semilogy(-f_s/2+f_s/N:f_s/N:f_s/2, abs( fftshift (fft(y))).”2);

set(gca, ‘ylim’, 10.7-2 9));
xlabel('frequency (Hz)');
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Matlab example

matlab_ex _1.m

-500 -300 -100 100 300 500
frequency (Hz)
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Note that the actual implementation of the DFT is not performed as its described above.
In actuality we use an algorithm called the Fast Fourier Transform (FFT), which we will
discuss in lecture 7. Hence the function namesin matlab, e.g., fft andifft  (forinverse FFT).

Note the use of fftshift in the above code. This is used in matlab to display the DFT
symmetrically around the DC term. See what happens without it in the following slide.
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MATLAB_EX_1 shows a simple example of fft in practice

%
%
% file: matlab_ex_1.m, (c) Matthew Roughan, Sat Aug 7 2004

% directory: /home/mroughan/Classes/Transformations/2 004/Matlab/
%

%

fs

f

= 1000; % sampling frequency
f 0 = 100; % frequency of the signal

x = 1:1/f_s:10; % sample points

N = length(x);

y = sin(2 *pi*f 0+*x); % sampled signal

semilogy(-f_s/2+f_s/N:f_s/N:f_s/2, abs(fftshift(fft( y)))."2, ’linewidth’, 3);

%%%% make the axes pretty and add labels

grid on

set(gca, 'ylim’, 10.7[-2 9], 'ytick’, 10.7[-2:2:9], ’xtic k', [-500:200:500]);
set(gca, 'linewidth’, 3, 'fontsize’, 18);

xlabel('frequency (Hz)");

%%%% print out a copy
print(-depsc’, 'Plots/matlab_ex_1.eps’);
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Symmetry

Discrete power spectrum is even and periodic so we can
display in a number of ways.

power spectrum

OV (W %

Frequency —_g N 2j;

S 3

\
1 § § ] & A§
—£/2 £/2 0 £
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Matlab example 2

matlab_ex 2.m

400 600 800 1000
frequency (Hz)
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% MATLAB_EX_1 shows a simple example of fft in practice

% file: matlab_ex_1.m, (c) Matthew Roughan, Sat Aug 7 2004

% directory: /home/mroughan/Classes/Transformations/2 004/Matlab/
%

%

f_s = 1000; % sampling frequency

x = 1:1/f_s:10; % sample points

N = length(x);

%%%% sampled signal

f 0 = 100; % frequency O in the signal
f 1 = 200; % frequency 1 in the signal
y = sin(2 *pi*f 0+*x) + sin(2 *pi*f_1 *x);

%%%% FFT of data
z = fft(y);
freq = (0:N-1) * f_sIN;

%%%% plot the data
semilogy(freq, abs(z)."2, 'linewidth’, 3);

%%%% make the axes pretty and add labels

grid on

set(gca, 'ylim’, 10.7[-2 9], 'ytick’, 10.7[-2:2:9], ’xtic k', [0:200:1000]);
set(gca, 'linewidth’, 3, ‘fontsize’, 18);

xlabel(frequency (Hz)');

%%%% print out a copy
print(-depsc’, 'Plots/matlab_ex_2.eps’);
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Properties of the DFT

Mostly the same as Continuous FT
» invertible
» no redundancy so it is efficient
» Linearity: ax;(n)+ bxy(n) — aXy(k) + bX(k)
» Time shift: x(n—ng) — X(k)e~ 2
» Time scaling: a bit more complicated!
» Duality: a bit more complicated!
» Frequency shift: x(n)e 12" — X(k — ko)
» Convolution: xi(n)*xz(n) — Xy (K)Xz(k)

Now n and k are integers, with the result that we are
missing properties related to derivatives.
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Duality and the DFT

The duality property is a little changed from before:
given a signal x(n) for n=0,...,N—1, with DFT X(k) for
k=0,...,N—1, then the DFT of X(n) is

Nx(0), fork=0
Nx(N—k), fork=£0

= Nx(N—kmodN)

DFT(X;K)

The result is similar to previous duality results if we
think of the points cyclically, i.e.

X(—kmodN) = x(N —k modN)

That works well with the periodic representation of
frequency spectrum that we get for a sampled signal.
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Convolution is still really important. There is a java applet to play with at
http://www.jhu.edu/~signals/discreteconv2/index.htm |
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The duality property is different from the continuous case for a couple of reasons:

» our definition of the DFT is not symmetric — the inverse transform has a factor of 1/N
that doesn’t appear in the forward transform. Remember that we are using a
symmetric definition for the continuous Fourier transform. We use the asymmetric
definition here for ease, because it is consistent with Matlab.

» the signal itself is no longer symmetric — we assume it has N points x(n) for
n=0,...,N—1, so it only makes sense to discuss x(—n) in the cyclical sense above.

Proof: take the DFT of X(n) (and noting that €2™"N = 1 for n € IN), for k # 0

N-1 N-1
Z X(n)efiZTIkn/N _ Zox(n)é'ZTINn/NefiZlen/N
n=0 n=

N-1

_ X () e 2HN-Kn/N
nZO (n)
= Nx(N—k)

as it has become N times an IDFT. So the DFT of X(n) is Nx(N —k).
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Properties of the DFT

There are some new properties unique to DFTs
» Leakage that fits exactly our discrete frequencies
» Padding (packing)
» Similarity (discrete version of time scaling)

See below for details.
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Leakage example

time
8 T T T T T T
£
=
5
(]
ol
()]
)
=
“tof
0 5 10 15 20 25 30
frequency
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» Leakage — what happens when the signal doesn'’t have a period that fits exactly our
discrete frequencies

» Padding (packing) — what happens when we put zeros at the end of a set of data
» Similarity — what happens when we interleave zeros in a signal

Transform Methods & Signal Processing (APP MTH 4043): |ezB8 — p.63/80

Transform Methods & Signal Processing (APP MTH 4043): lexi8 — p.64/80




Properties of the DFT: Leakage

DFT is different from the continuous time FT is that
the DFT suffers from Leakage.

» Unlike Continuous transform, DFT uses a finite
number of frequencies.

» Not all signals fit this mold exactly: what happens
to sinusoids with non-integral frequencies?

» Their power is spread over a few frequencies.

» Note we are representing the signal by a series of
numbers X (k) which represent the correlation of
the signal to a particular sinusoid with freq. k/N,

» Note that, as the data gets longer, the frequency
resolution improves
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DFT properties: padding

We can pad (or pack) a sequence with zeros to extend
its length

(n) = x(n), if0<n<N-1
YW=Y0 = ifN<n<KN

The resulting DFT is

Tl =Y =X ()
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Leakage has also been called "window splatter" for reasons that will become clear around
lecture 8 when we considering windowing.
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Padding (packing) example (i)

Data x(n) = (0,1,0,0) with transform X (k) = (1,—i,—1,i)
Pad to get y(n) = (0,1,0,0,0,0,0,0) then the DFT

Yk = N dy(me o

Y(0) = e 208 =1

Y(l) — e—i2nl/8 _ e—iT[/4 — (l— I)/\/é
Y(Z) — e—i2r|2/8 _ e—ir[/2 —

Y(3) — efi2n3/8 — efiT[3/4 — (_1_ |)/\/§
Y(4) — efi2T[4/8 — efiT[ - 1

Y(5) — e—i2n5/8 — e—in5/4 — (—1+i)/\/§
Y(G) — e—i2TI6/8 _ e—iT[3/2 — i

Y(?) — e—i2rr7/8 _ e—in7/4 — (l—l—i)/\/é
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Padding (packing) example (i)

Data x(n) = (0,1,0,0) with transform X (k) = (1,—i,—1,i)
Pad to get y(n) = (0,1,0,0,0,0,0,0) then the DFT

Y(0) = X(0)
Y(2) = X(1)
Y(4) = X(2)
Y(6) = X3

So the relationship Y (k) = X(k/2) holds, with K =2, for
even values of k.

Note we cannot derive Y (k) for odd values of k, or if K is
not an integer, but the relationship still tells us how to
scale the frequency units, when we pad.
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Original data length N = 32 (frequency = 3.333) K = 3, new sequence length KN = 96. (frequency = 10/K)
I I |

z| 1111 1T THT T E T T

= [ ’ c

o} 5}

= =

o o

Q. o

Y é PO Y T ? (-2 W) ? T 8 o ry é
-15 -10 -5 0 5 10 15 -40 -30 -20 -10 0 10 20 30 40
frequency frequency
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% file: padding.m, (c) Matthew Roughan, Thu Aug 5 2004
ZD = 32;
x = (LN)/N;
fl = 3.3333;
yl = sin(2 *pi *fl *x);
figure(1)
subplot(2,1,1);
hold off
plot([x; x], [zeros(size(y1)); y1],'b’, 'linewidth’, 3);
hold on
plot(x, y1, 'bo’, 'linewidth’, 4);
set(gca, ’'linewidth’, 3, 'fontsize’, 18, 'ylim’, [-1.2 1.2 1, xlim', [0 max(x)], 'xtick’, [, 'ytick’, [I);
ylabel('signal’);
z1 = fftshift(abs(fft(y1))."2);
subplot(2,1,2);
hold off
plot([-N/2:N/2-1; -N/2:N/2-1], [zeros(1, N); z1], 'b’, 'l inewidth’, 4);
hold on
plot(-N/2:N/2-1, z1, 'bo’, 'linewidth’, 3);
set(gca, 'linewidth’, 3, 'fontsize’, 18, 'xlim’, [-N/2 N/2 1, ‘ytick’, [I);
ylabel(’power’);
xlabel('frequency’);
set(gef, 'PaperUnits’, 'centimeters’, 'PaperPosition’, [0 0 30 15))
print(-depsc’, 'Plots/padding.eps’);
%%%%%%% pad the data
K =3;
pad = zeros(1,length(yl) *K);
pad((1:length(y1))) = y1;
X_u = (LK *N)/(K *N);
figure(2)
subplot(2,1,1);
hold off
e L (s TR ) TN EA eV o D e T
Transform Methods & Signal Processing (APP MTH 4043): lsz8 — p.69/80 E%?(XOE pad "bor, Tnewidth, 4) Transform Methods & Signal Processing (APP MTH 4043): lszd8 — p.70/80




DFT properties: similarity

We can interleave a sequence with zeros, e.q.

[ x(n/K), ifn=0K,2K,...,(N- 1)K
y(n) = { 0, otherwise

The resulting DFT is

Fyr =Y(k) =
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Similarity example (ii)

Data x(n) = (0,1,0,0) with transform X (k) = (1,—i,—1,i)
Interleave zeros to get y(n) = (0,0,1,0,0,0,0,0) then

Yk = sidy(me iz

Y(0) = e'208 =1

Y(l) — e—i2T|2/8 — e—iT[/2 —
Y(Z) — efi21'[4/8 _ efiT[ - 1
Y(3) — g i2m6/8 — eim/2 _— j

Y(4) — e—i2T|8/8 — giam - 1

Y(5) = ei2mos — e B2 _
Y(G) — e—i2Tr12/8 — gim —
Y(7) gi2m4/8 — ez _

SoY(k) = (1,—i,—1,i,1,—i,—1,i) (or X(k) repeated twice)
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Duality applies with similarity, i.e.,

) x0), fork=0
DFT(X’k)_{ NXx(N—k), fork#0

so if we repeat a signal in the time domain, we can compute its Fourier transform by interleaving
zeros in the Fourier domain.
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Sampling, Quantization,
Dithering and
Half-toning

The properties we have just seen leed to some direct
applications. In particular, we don't always get a signal in
the form we want it, so we may have to change its
sampling rate, or quantization, and we can exploit our
new mathematically derived intuition to start work out

P

A= | .
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Similarity application

Practical use: upsampling (interpolation)

We have a sequence sampled every ts seconds,
e.g. at a rate fs = 1/ts, but we need a sequence
sampled at rate Kfs.

Approach: produce a new sequence with K —1 zeros
interleaved between each original data point.
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Similarity application: upsampling

Given K — 1 zeros interleaved between each original sample.

Upsampling example

32 samples (frequency 3.4 cycles)

» max frequency in original data is fs/2, with I I I I I I I I
. . . )
frequency resolg‘non fs/N, and N/2 points in H T 1 7 T . . I ? \ 1
frequency domain. 8 é 1 l 1 é | d l l 1
» upsampled data has max frequency Kfs/2, with
frequency resolution fs/N, and KN/2 points in
frequency domain. ; ; ; ; ; ; ;
» the frequency resolution doesn't change, but now we g
have K repeats of the original spectrum at intervals g
fs/N. | |
S/ A a PPN ) ? e 9 ? 2 oo A A
» to get a signal with the same original band-limited -18 ~10 P eqeny 10 15
power-spectrum, we apply a low-pass filter,
smoothing the data.
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% file: upsampling_1.m, (c) Matthew Roughan, Thu Aug 5 2004
l\/l0 = 32;
x = (L:N)/N;
fl = 3.4;
yl = sin(2 *pi *fl *x);
figure(1)
subplot(2,1,1);
hold off
plot([x; X], [zeros(size(yl)); y1],’b’, 'linewidth’, 3);
hold on
plot(x, y1, 'bo’, 'linewidth’, 4);
set(gca, ‘linewidth’, 3, ‘fontsize’, 18);
ylabel(’signal’);
set(gca, 'ylim', [-1.2 1.2], xlim’, [0 max(x)], xtick’, [ ], ‘ytick', I);
z1 = fitshift(abs(fft(y1))."2);
subplot(2,1,2);
hold off
plot([-N/2:N/2-1; -N/2:N/2-1], [zeros(1, N); z1], 'b’, I inewidth’, 4);
;I(;l?(-l\(l)lr]Z:N/Z-l, z1, 'bo’, ’linewidth’, 3);
set(gca, ‘linewidth’, 3, ‘fontsize’, 18);
set(gca, 'xlim’, [-N/2 N/2], 'ytick', []);
ylabel('power’);
xlabel('frequency’);
set(gcf, 'PaperUnits’, ‘centimeters’, 'PaperPosition’, [0 0 30 15))
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print(-depsc’, 'Plots/lupsampling.eps’);
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Upsampling example

3 x's upsampled (96 samples)

Upsampling example

low pass filter, then IDFT

)
AR I il al e il il i
g,l.....6.....T...*....’....T.....‘....I S 0‘ .9 °6 .’T 9. ‘°T
s T TS 41 4111
) o
s =
o o
o o
-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40
frequency frequency
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% file: upsampling_2.m, (c) Matthew Roughan, Thu Aug 5 2004 % file: upsampling_3.m, (c) Matthew Roughan, Thu Aug 5 2004
% %
N = 32 N =32
x = (L:N)/N; x = (L:N)/N;
fl = 3.4; fl =34
yl = sin(2 *pi *fl *x); yl = sin(2 *pi *fl *x);
K = 3; % upsample by 3 K = 3;
upsample = zeros(1,length(yl) *K); upsample = zeros(1,length(y1) *K);

upsample(K *(1:length(yl1))) = y1;
Xx_u = (LK *N)/(K *=N);

figure(2)

subplot(2,1,1);

hold off

plot([x_u; x_u], [zeros(size(upsample)); upsample],’b’ , linewidth’, 3);
hold on

plot(x_u, upsample, 'bo’, ’linewidth’, 4);

set(gca, 'linewidth’, 3, ‘'fontsize’, 18);

ylabel(’signal’);

set(gca, 'ylim’, [-1.2 1.2], 'xlim’, [0 max(x)], 'xtick’, [ 1, 'ytick’, 0);

z2 = fftshift(abs(fft(upsample))."2);

subplot(2,1,2);

hold off

plot([-K  *N/2:K *N/2-1; -K *N/2:K *N/2-1], [zeros(1, K *N); z2], 'b’, ’linewidth’, 4);
hold on

plot(-K  *N/2:K *N/2-1, z2, 'bo’, ’linewidth’, 3);

set(gca, 'linewidth’, 3, ’'fontsize’, 18);

set(gca, 'xlim’, [-K *N/2 K+N/2], 'ytick’, [1);

ylabel('power’);

XabelCliequency).

set(gcf, 'PaperUnits’, ’centime£rén$%$wﬁ$npds & Signal PI’OE,E§S§Bglg,ﬁ\PP MTH 4043): le=0B — p'77/80

upsample(K *(1:length(y1))) = y1;

Xx_u = (LK *N)/(K *N);

z = fft(upsample);

z(N/2+1:end-N/2+1) = 0; %%% filter the data (using perfect |
y3 = real(ifft(z));

ow-pass in freq. domain).

figure(3)

subplot(2,1,1);

hold off

plot([x_u; x_u], [zeros(size(y3)); y3],’b’, ’linewidth’ , 3);

hold on

plot(x_u, y3, 'bo’, 'linewidth’, 4);

set(gca, ’'linewidth’, 3, ‘fontsize’, 18);

ylabel(’signal’);

set(gca, 'ylim', [-1.2 1.2)/K, xlim’, [0 max(x)], 'xtick’ , [, ytick', [0);

subplot(2,1,2);

hold off

plot([-K  *N/2:K *N/2-1; -K *N/2:K *N/2-1], [zeros(1, K *N); abs(fftshift(z))], 'b’, 'linewidth’, 4);

hold on

plot(-K  *N/2:K xN/2-1, abs(fftshift(z)), 'bo’, 'linewidth’, 3);

YY = get(gca,'ylim’);

Rlot(Lk N2 U2 N2 N2 U2 K N/21 10 0 max(abs(z\) max(abs(z)) 0 0l v linewidth' 3 );
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Upsampling tricks

Trick of the day: low-pass before upsampling.

» notionally, the filtering occurs after upsampling

» If filtering in the time domain however, K —1/K
proportion of multiplies in the filter are by zero.

» can ignore these, but this is the same as low-pass
before upsampling.

Let's revisit this later (after discussing filtering in more
detail).
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Upsampling applications: audio

Oversampling CD or DVD players
» digital components are cheap
» analogue components are more expensive

» Digital to Analogue Conversion (DAC) is required in
CD player
» want tfo make this as cheap as possible (for a given
quality)
The trick
» upsample in the digital domain (where it is cheap)

» when we convert to analogue, we can use a simpler,
cheaper analogue filter, to get the same results
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Downsampling can be accomplished similarly, and combined we can perform resampling.
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Notes:
http://stereophile.com/asweseeit/344/
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