Transform Methods & Signal Processing lecture 11

Matthew Roughan

<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

September 8, 2010

2D Wavelets

Generalizing Wavelets to 2D is not quite as simple as generalizing the Fourier transform to higher dimensions.

Simple extension (for separable wavelet bases)

Separable wavelet bases

Take any orthonormal wavelet basis $\{\psi_{n,j}\}_{n,j\in\mathbb{Z}}$ of $L^2(\mathbb{R})$, then a separable wavelet basis for $L^2(\mathbb{R}^2)$ is

$$\{\psi_{n_1,j_1}\psi_{n_2,j_2}\}_{n_1,n_2,j_1,j_2\in\mathbb{Z}}$$

- but basis above mixes resolutions at different scales j_1 and j_2
- separable MRAs lead to constructions that are products of functions dilated to the same scale
- can construct non-separable bases, but used less often
- build approximation spaces $V_j^2 = V_j \otimes V_j$ such that these are separable, i.e., basis looks like $\phi_{n_1,n_2,j}^2(x_1,x_2) = \phi_{n_1,j}(x_1)\phi_{n_2,j}(x_2)$

2D scaling functions

Scaling functions

$$\phi_{n_1,n_2,j}^2(x_1,x_2) = \phi_{n_1,j}(x_1)\phi_{n_2,j}(x_2) = \frac{1}{2^j}\phi\left(\frac{x_1}{2^j} - n_1\right)\phi\left(\frac{x_2}{2^j} - n_2\right)$$

Approximation $\hat{f}_j = \sum_{n_1,n_2,j} \left\langle f, \phi^2_{n_1,n_2,j} \right\rangle \phi^2_{n_1,n_2,j}$ where

$$\langle f, \phi_{n_1, n_2, j}^2 \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2) \phi_{n_1, n_2, j}^2(x_1, x_2) dx_1 dx_2$$

which separates into two integrals if f separates.

2D Wavelets

We get 3 mother wavelets

$$\psi^{1}(x_{1}, x_{2}) = \phi(x_{1})\psi(x_{2})
\psi^{2}(x_{1}, x_{2}) = \psi(x_{1})\phi(x_{2})
\psi^{3}(x_{1}, x_{2}) = \psi(x_{1})\psi(x_{2})$$

from which we derive the wavelets by dilation and 2D translations.

2D Wavelet filter spectrum

2D MRA tree

2D Wavelet Filters

$$a_j(n_1,n_2) = \langle f, \phi_{n_1,n_2,j} \rangle$$
 and $d_j^k(n_1,n_2) = \langle f, \psi_{n_1,n_2,j}^k \rangle$

one step of the decomposition takes the form

$$a_{j+1}(n_1, n_2) = [a_j * \bar{h}\bar{h}] (2n_1, 2n_2)$$

$$d_{j+1}^1(n_1, n_2) = [a_j * \bar{h}\bar{g}] (2n_1, 2n_2)$$

$$d_{j+1}^2(n_1, n_2) = [a_j * \bar{g}\bar{h}] (2n_1, 2n_2)$$

$$d_{j+1}^3(n_1, n_2) = [a_j * \bar{g}\bar{g}] (2n_1, 2n_2)$$

- Notation $\bar{h}(n) = h(-n)$
- Product hg means $[hg](n_1,n_2) = h(n_1)g(n_2)$
- 2D convolution can be performed as two 1D convolutions (downsample between doing rows and columns)

2D Wavelet Block Diagram

2D Wavelet Reconstruction

Representation $\{a_{J}, \{d_{j}^{1}, d_{j}^{2}, d_{j}^{3}\}_{L < j \leq j}\}$

■ define upsampled 2D image $\breve{y}(n_1, n_2)$ made by inserting rows and columns of zeros in between existing rows and columns

Reconstruction

$$a_j = \breve{a}_{j+1} * hh + \breve{d}_{j+1} * hg + \breve{d}_{j+1} * gh + \breve{d}_{j+1} * gg$$

2D Wavelet Block Diagram

2D Layout

2D Layout

2D Layout

Simple extension (for separable wavelet bases)

Simple extension (for separable wavelet bases)

Applications

- \blacksquare FBI have \sim 30 million fingerprints
 - actually more like 200 million (repeats etc)
 - 30-50,000 more per day
- 1993 started converting from ink on cards (transmitted by fax) to digital storage
- 500 pixels per inch resolution. 256 grey levels (8 bits)
 - one fingerprint, 700,000 pixels, and 6 MB storage
 - 200 TB for whole database
 - have to transmit cards (3 hours on slow modem)
- compression is needed

Basic idea, quantize in the transform space.

- use Wavelet transform (in 2D)
- steps
 - wavelet transform
 - quantize coefficients
 - entropy encoding
- called WSQ (Wavelet Scalar Quantization)

Original, file size 589,824 bytes.

http://www.c3.lanl.gov/~brislawn/FBI/FBI.html

Original, file size 589,824 bytes.

http://www.c3.lanl.gov/~brislawn/FBI/FBI.html

Compression

Compression

- Simplest version just perform algorithm above
- more general: quantize wavelet coefficients by a fixed step

$$\hat{d}(j,k) = Q \operatorname{sign}(d(j,k)) \left[\frac{|d(j,k)|}{Q} \right]$$

- more general: use a quantization table
- lacksquare Inverse Wavelet Transform of $\{\hat{d}(j,k)\}_{j,k}$

Quantization

We start with some continuous distribution

Quantization

Then quantize the distribution into a number of levels

JPEG 2000

JPEG 2000 uses wavelets rather than the DCT