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This le
ture 
on
erns a number of advan
ed topi
s: fra
tals and wavelets, and non-standardsampling. Note that this material is not examinable this year.
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Self-similarity in the

frequen
y domain
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Self-similaritySo, Nat'ralists observe, a �eaHath smaller �eas that on him prey;And these have smaller still to bite 'emAnd so pro
eed ad in�nitum Jonathon Swift, 1733Great �eas have little �eas upon their ba
ks to bite 'em,And little �eas have lesser �eas, and so ad in�nitum.And the great �eas themselves, in turn, have greater �eas to go on;While these again have greater still, and greater still, and so on.De Morgan: A Budget of Paradoxes, p. 377.
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Self-similarity: Ko
h Snow�ake
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Links
http://mathworld.wolfram.com/KochSnowflake.html
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Self-similarity: IFS Fern

C 
ode from

http://astronomy.swin.edu.au/~pbourke/fractals/
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Links:

http://www.iemar.tuwien.ac.at/modul23/Fractals/subp ages/33IFS.html
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Mandelbrot set I
http://aleph0.clarku.edu/~djoyce/julia/julia.html
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Mandelbrot set II

http://aleph0.clarku.edu/~djoyce/julia/julia.html
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Mandelbrot set III
http://www.softsource.com/softsource/fractal.html
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Statisti
al Self-similarity

Statisti
al Self-similarity (SS)

◮ this is not a 
ourse on fra
tals

◮ Fra
tals (su
h as above) are deterministi


◮ we are interested in statisti
al properties of traf�


◮ look for statisti
al self-similarity
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Statisti
al Self-similarity
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The three 
urves show su

essive zooms of a sample of fra
tional Brownian Motion (fBM).The larger red 
urve shows a zoom of the red region of the blue 
urve, and the larger green
urve shows a zoom of the green region on the red 
urve.
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Ethernet traf�
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The 
urves show samples of Ethernet traf�
 (red), in pa
kets per time interval, 
omparedwith a simple traditional model for traf�
. The time interval use for measurement 
hangesfrom the top to the bottom, the top has a �ne resolution, or 0.01 se
onds, with the lower twobe
oming su

essively 
oarser. Going from bottom to top, the region shown in bla
k on thebottom graph is expanded out to form the next graph and similarly for the 
onstru
tion of thetop graph.
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Statisti
al Self-similarity

SS blo
k aggregation de�nition(another de�nition exists)We de�ne he aggregated time series {X(m)
k } at level m by

X(m)
k :=

X(k−1)m+1 + · · ·+Xkm

m
.

A stationary time series X = {X1,X2, . . .} is 
alledself-similar with Hurst parameter H if, for all m, theaggregated pro
ess m1−HX(m) has the same distributionsas X.
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Example fGN: (H = 0.5)
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Example fGN: (H = 0.75)
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Example fGN: (H = 0.99)
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Note that as H 
hanges, the 
hara
ter of the 
urves 
hanges. It has more 
orrelation, and sowe see �runs� of similar values, or apparent trends.
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Properties of Self-Similar Pro
ess
◮ Stationary so EXi = 0, VarXi = σ2 (
onstant).
◮ Cov(Xi,Xi+k) depends only on the lag k and is given by

γ(k) =
1
2

σ2
(

|k+1|2H −2|k|2H + |k−1|2H
)

.

◮ Cov(X(m)
i ,X(m)

i+k ) is given by
γ(k) =

1
2

m2(H−1)σ2
(

|k+1|2H −2|k|2H + |k−1|2H
)

.

◮ Asymptoti
 behavior of the auto
orrelation

lim
k→∞

ρk

k2(H−1)
= H(2H −1).

◮ The varian
e varies with the aggregation level asVarX(m) = m2(H−1)σ2,
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Long-range dependen
eLong-range dependen
e (LRD) for stationary pro
ess

◮ LRD = slow (power-law) de
ay in the auto
ovarian
e

γX(k) ∼ cγ|k|−(1−α)as k→ ∞, for some α ∈ (0,1)

◮ implies for all N
∞

∑
k=N

γX(k) → ∞

this is sometimes used as an alternative de�nition

◮ also 
alled long-memory pro
ess
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LRD and SSNoti
e that self-similarity implies LRD with
α = 2H −1for 0.5≤ H < 1, and 0≤ α < 1

0 200 400 600 800 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
H = 0.50
H = 0.75
H = 0.99

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

H = 0.50
H = 0.75
H = 0.99

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.18/83

The three graphs show the empiri
al auto
orrelation fun
tion for three different values of

H. The left graph shows the auto
orrelation using linear axes, and the right graph shows alog-log graph, i.e., the axes are log-s
ale. Note that the auto
orrelations are approximatelylinear (with some noise due to the empiri
al nature of the graphs shown) when examined onthe log-log graph. This is a general property of power-laws.The horizontal dashed line shows the 95% signi�
an
e level. Values under this 
ould be
onsidered too small to be signi�
ant. Note that the red 
urve lies almost entirely below thisline, indi
ating an un
orrelated pro
ess.
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LRD in the frequen
y domain

Long-range dependen
e (LRD) 
an also be de�ned in thefrequen
y domain using the Fourier transform of theauto
ovarian
e

fx(s) ∼ cf |s|−α , |s| → 0When α = 1 we get 1/f noise, but the term is oftenapplied to the range of values of α = 2H −1.

◮ frequen
y spe
trum of white noise is �at

◮ frequen
y spe
trum of Brownian motion is 1/ f 2

◮ frequen
y spe
trum of �pink� noise is 1/ f
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Example fGN spe
trum (H = 0.5)
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Example fGN spe
trum (H = 0.75)
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Example fGN spe
trum (H = 0.99)
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1/f noiseLRD and SS are also seen elsewhere

◮ 
ardia
 rhythms (in healthy hearts)

◮ hydrologi
al data (rainfall, and river �ow)

⊲ Hurst's early work was a
tually in Nile river data

◮ musi
 seems to have similar 
hara
teristi
s

◮ turbulen
e

◮ 
haoti
 pro
esses in general

◮ �nan
ial modelling
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Conne
tion to Fra
talsFra
tals more 
on
erned with s
aling laws at small s
alesand high-frequen
ies

fx(s) ∼ cf |s|−α , |s| → ∞Hölder exponent h = (α−1)/2

◮ If 0 < h < 1 the Hausdorff dimension D = 5−α/2

◮ If h < 0 sample paths are everywhere dis
ontinuous
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fra
tional Gaussian NoisefGN (fra
tional Gaussian Noise) is stationary Gaussianpro
ess Xt with mean µ, varian
e σ2 and auto
orrelationfun
tion

ρ(k) =
1
2

(

|k+1|2H −|k|2H + |k−1|2H
)

whi
h asymptoti
ally goes like

ρ(k) ∼ H(2H −1)|k|2H−2 , k→ ∞so cγ = H(2H −1). In the frequen
y domain,

fx(s) ∼ cf |s|1−2H , |s| → 0where now

cf = σ2
Z ·2(2π)1−2HH(2H −1)Γ(2H −1)sin(π(1−H)),where Γ(x) is the gamma fun
tion.
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fra
tional Gaussian NoiseSynthesis of fGN:

◮ Durbin-Levinson: generate white noise, and thenimpose exa
t 
orrelation stru
ture. Slow O(N2)algorithm

◮ Spe
tral synthesis:

⊲ generate white noise
⊲ take FFT

⊲ multiply by desired spe
trum
⊲ inverse FFT, to get ba
k to time domainNote that dis
rete version of 
ontinuous pro
ess is nolonger exa
tly self-similar.
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fra
tional Brownian MotionThe (non-stationary) Gaussian pro
ess with 
ovarian
efun
tion given by

Γ(s, t) =
1
2

σ2
(

s2H − (t −s)2H + t2H
)

,

varian
e σ2 and expe
tation 0 is 
alled fra
tionalBrownian motion (fBM).Note the in
rement pro
essof fBM is fGN, just as thein
rements of BM are whitenoise.
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Wavelets: interpretation

◮ Multi-Resolution Approximation (MRA)
⊲ aggregation at different s
ales is likeapproximating the data at different s
ales
⊲ data stats have known s
aling properties
⊲ a more general way of doing multi-s
aleapproximation is wavelets

◮ sub-band �lters (logarithmi
ally pla
ed)
⊲ logarithmi
ally pla
ed, so natural log s
ale arisesin frequen
y domain.
⊲ sub-bands sampled at frequen
y appropriate tothe bandwidth
⊲ has the advantage of de-
orrelation of wavelet
oef�
ients
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Dyadi
 grid

Dyadi
 grid has self-similar s
aling behavior!

fr
eq

u
en

cy

time
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Wavelet's as sub-band �ltersThe idea (looking a
ross frequen
ies or s
ales) is thatthe transform breaks frequen
y spe
trum into bands.
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Wavelet's as sub-band �ltersEa
h band equal size on log(frequen
y) graph
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Wavelets and s
aling

◮ the wavelet transform de-
orrelates details, so 
anthink of ea
h series of {d j ,k}k∈Z for ea
h j as a timeseries, with short-range 
orrelations.
◮ wavelet 
onditions ensure

E [d j ,k] = 0

◮ we know the distribution of energy in ea
h sub-band

◮ this translates to energy in ea
h s
ale of wavelet
oef�
ients d j ,k, e.g.Var [d j ,k] = E
[

d2
j ,k

]

= µj

◮ we form an estimator of µj by

µ̂j =
1
Nj

Nj

∑
k=1

|d j ,k|2
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Wavelets and s
aling

fx(s) ∼ cf |s|−α

d j ,k = 〈 f ,ψ j ,k〉 =

Z ∞

−∞
f (t)

1√
2 j

ψ∗
( t

2 j
−k
)

dt

E
[

d2
j ,k

]

= 2 jαcfCwhere

C =
Z ∞

−∞
|s|−α|Ψ∗ (s) |2dsso

log2E
[

d2
j ,k

]

= jα+ log2cfCPerform regression on log2 µ̂j vs the o
tave j .
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Logs
ale diagram
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Logs
ale diagram

In fa
t, we 
an approximate

log2 µ̂j ∼ N

(

jα+ log2cfC,
2 j+1

nln22

)

So we 
an

◮ estimate 
on�den
e intervals for log2 µ̂j on theLogs
ale diagram

◮ perform a weighted regression

◮ estimate 
ovarian
e of estimates of α and cf

◮ a
tually worth adding a small 
orre
tion to get

y j = log2µj −g j (be
ause log and expe
tation don't
ommute)
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Wavelet estimator properties
◮ asymptoti
ally ef�
ient and unbiased

⊲ almost as a

urate as Whittle (MLE)
◮ joint estimator of H and cγ

◮ known varian
e of estimates
◮ robustness

⊲ non-Gaussianity
⊲ trends in the data
⊲ short-range 
orrelative stru
ture

⊲ mu
h better than Whittle in these 
ases

http://www.cubinlab.ee.mu.oz.au/~darryl/secondorder _code.html/

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.36/83

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.36/83

http://www.cubinlab.ee.mu.oz.au/~darryl/secondorder_code.html/


Non-standard sampling
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Shannon theorem�If a fun
tion f (t) 
ontains no frequen
ies higher than W
ps, it is 
ompletely determined by giving its ordinatesat a series of points spa
ed (1/2W) s apart.�Claude Shannon, �Communi
ations in the presen
e of noise�, Pro
.IRE,37, pp.10�21, 1949.

◮ uniform sampling

⊲ samples spa
ed a uniform distan
e apart

◮ Nyquist limitH.Nyquist, �Certain topi
s in telegraph transmission theory�,AIEE Trans., 47, pp.617�644, 1928.
◮ Impli
itly, we 
an re
onstru
t f (t) from its samples

⊲ if the signal is bandlimited
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Shannon theoremProof sket
h: Assume fun
tion is bandlimited so

F(s) = 0 for |s| > W, then the IFT is

f (t) =

Z ∞

−∞
F(s)ei2πstds=

Z W

−W
F(s)ei2πstds

If instead, we make, F periodi
, with period 2W then we
an �nd a Fourier series for it, e.g.

F(s) =
∞

∑
i=−∞

Ane
iπns/W

where,

An =
1

2W

Z W

−W
F(s)e−iπns/W ds=

1
2W

f
( n

2W

)
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Shannon theoremProof sket
h:We 
an represent F(s) perfe
tly with the Fourier series
oef�
ients An, but these are just proportional to thefun
tion sampled at uniform intervals, e.g. An ∝ f
(

n
2W

).Hen
e, the samples 
ompletely de�ne the FT F , andhen
e the fun
tion f . 2
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Shannon interpolation

Re
onstru
tion of original signal from IFT

f (t) =

Z W

−W
F(s)e−i2πstds

=

Z W

−W

∞

∑
i=−∞

Ane
iπns/Wei2πst ds

=
∞

∑
i=−∞

An

Z ∞

−∞
r(s/2W)ei2πs(−t+n/2W) ds

=
∞

∑
i=−∞

2WAn

Z ∞

−∞
r(−s)ei2πs(2Wt−n) ds

=
∞

∑
i=−∞

f
( n

2W

)

sinc(2Wt−n)
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The last step follows be
ause

◮ The IFT of r(s) is sinc(t)

◮ When t = m/2W for man integer, then 2Wt−n is also an integer m−n. Note that

sinc(m−n) = δmn.

◮ Hen
e at those points we get

f (m/2W) =
∞

∑
i=−∞

2WAnsinc(2Wt−n) =
∞

∑
i=−∞

2WAnδmn = 2WAm
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Shannon interpolation

Assume we sampled at the Nyquist rate, i.e. fs = 2W, or
ts = 1/2W, then the sample points would be

f
( n

2W

)

The summation

f (t) =
∞

∑
i=−∞

f
( n

2W

)

sinc(2Wt−n)

represents a 
onvolution of the sampled signal with a sincfun
tion. Now we know the sinchas a simple re
tangulartransfer fun
tion, and so it a
ts as a perfe
t low-pass�lter.
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Shannon interpolation

Interpretation

◮ 
onvolution with sin


◮ equivalent to ideal (re
tangular) bandpass �lter

reconstructed functionsamples

ideal

lowpass
analogue

◮ this is essentially what a Digital to Analogue
onverter tries to do

◮ have to build analogue �lter � hard to make it ideal
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Other sampling s
hemes

◮ dyadi
 grid (wavelets)

◮ ordinate and slope sampling

◮ interla
ed sampling

◮ impli
it sampling

◮ irregular sampling

◮ hexagonal sampling
◮ many others ...
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Ordinate and Slope Sampling

◮ sample the value, and derivative at a point

st

time

uniform samples

◮ Shannon theorem for ordinate/slope samplingWe 
an re
onstru
t a fun
tion from knowledge ofits ordinate and slope at every other sample point.

◮ e.g. half the Nyquist sampling rate
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Interla
ed sampling

uniform samples
ts

time

interlaced samples δ t

◮ signal is uniquely determined given a series ofsamples at re
urrent sample points
tpm = tp +

mN
2Wfor p = 1,2, . . . ,N and m∈ Z

⊲ interla
ed sampling example above has N = 2

◮ limit δt → 0, is equivalent to ordinate/slope sampling
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Impli
it sampling

◮ e.g. sampling at zero 
rossings

implicit samples

time

◮ Appli
ations:

⊲ spe
ify �lter by zero 
rossings

⊲ re
onstru
t an image

⇒
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Impli
it sampling theory

◮ "Information in the Zero Crossings of BandpassSignals", B.F. Logan, Bell System Te
h. Journal, 56,pp. 487-510, April 1977.

⊲ a signal is uniquely re
onstru
tible from its zero
rossings if

⋆ The signal x(t) and its Hilbert transform XH(t)have no zeros in 
ommon with ea
h other.

⋆ The frequen
y domain representation of thesignal is at most 1 o
tave long, in other words,it is bandpass-limited between some B and 2B.

◮ �Re
onstru
tion of Two-Dimensional Signals FromThreshold Crossings�, A. Zakhor and A. V.Oppenheim, Pro
eedings of the IEEE, January 1990,vol. 78, no. 1, pp. 31-55.
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Irregular sampling

◮ not all sampling is on a regular grid

⊲ Astronomi
al data depends on when you 
anmake observations

⋆ 
louds might get in the way

⊲ Geophysi
al data

⋆ depends on whi
h ro
k strata you 
an �nd

⊲ Poisson sampling used in Internet performan
emeasurements

⊲ even regular samples have jitter

◮ all previous work assumed regular sampling

⊲ how 
an we deal with irregularity?
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Non-bandlimited signals

◮ we 
an't always pre-�lter analogue signal with aband-pass before sampling

⊲ Astronomi
al data 
an't be obtained betweensamples (e.g. 
louds)

⊲ Internet performan
e measurements are madewith probe pa
kets
⊲ A
ousti
 measurements of position of an obje
t

⋆ boun
e ultrasound pulse off an obje
t everyhalf a se
ond
⋆ don't see what happens in between

◮ aliasing is a problem without pre-�ltering

⊲ how 
an we 
ope without pre-�ltering?
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Astronomi
al data

◮ apparent magnitude of a variable star

0 200 400 600 800 1000 1200 1400
17.4
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time (days)

V

data 
ourtesy of Laurent Eyer, <Laurent.Eyer�obs.unige.
h>
http://obswww.unige.ch/~eyer/
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Astronomi
al data

◮ we 
an see

⊲ data are not uniformly spa
ed
⋆ there is no way to ��x� this

⊲ no obvious period

◮ no pre-�lter has been applied to the samples
◮ 
an we still look for periodi
ities in the data?
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Periodogram

◮ for uniformly sampled data Xn, use the periodogram

PX(k) =
1
N
|FTX(k)|2 =

1
N

∣

∣

∣

∣

∣

N−1

∑
n=0

Xne
−i2πkn/N

∣

∣

∣

∣

∣

2

.

◮ rewrite 
omplex exponential in terms of trig.fn.s

PX(k) =
1
N





(

N−1

∑
n=0

Xncos(2πkn/N)

)2

+

(

N−1

∑
n=0

Xnsin(2πkn/N)

)2


.

◮ write in terms of frequen
y f = k/(Nts) and sampletimes Tn = nts

PX( f ) =
1
N





(

N−1

∑
n=0

Xncos(2π f Tn)

)2

+

(

N−1

∑
n=0

Xnsin(2π f Tn)

)2


.
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Lomb-S
argle Periodogram
◮ for irregularly sampled data we use theLomb-S
argle periodogram

P(LS)
X ( f ) =

1
2

[

(

∑N−1
k=0 (X(Tk)− X̄)cos(2π f (Tk− τ))

)2

∑N−1
k=0 cos2(2π f (Tk− τ))

+

(

∑N−1
k=0 (X(Tk)− X̄)sin(2π f (Tk− τ))

)2

∑N−1
k=0 sin2(2π f (Tk− τ))

]

,

where X̄ is the mean value of Xn and τ satis�es

tan(4π f τ) =
∑N−1

k=0 sin(4π f Tk)

∑N−1
k=0 cos(4π f Tk)

.
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Lomb-S
argle Periodogram explained

◮ think of a periodogram as �tting sine and 
osinefun
tions to the data

⊲ standard periodogram does a least-squares �t

⋆ assuming uniform samples

⊲ Lomb-S
argle Periodogram does the same

⋆ but allowing arbitrary sampling

◮ τ allows a shift in time to make everythingtime-shift invariant

◮ Fast O(N logN) variants exist (similar to FFT)
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Nyquist limits

For uniform sampling, we must obey Nyquist limit
◮ or we get aliasingFor non-uniform sampling, we don't need to follow thestandard (uniform sampling) Nyquist limit
◮ we don't need to bandpass signal before sampling!
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Nyquist limits

Intuition:

◮ for low-frequen
y, jitter in sampling time, isequivalent to error, or similar order of magnitude insample value

error

jitter
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Nyquist limits

Intuition:

◮ for high-frequen
y, jitter in sampling time,introdu
es errors of similar magnitude to signal

In some sense, there is some �ltering going on here.
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Lomb-S
argle Periodogram examples

◮ variable star data from before

0 5 10 15 20
0
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50

frequency (cycles per day)

po
w

er

Average measurement interval = 10.427days.Nyquist frequen
y ≃ 1/10-th 
y
le per day.Peak is at 11.7 
y
les per day.
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Folded PlotsSuperimposes a time series upon itself with respe
t to aspe
i�ed period.

◮ if period of fold is 
orre
t, then measurementswould line up

folded plot

0 1 phase

periodic signal
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Folded Plot example

◮ variable star data from before

⊲ period 11.7 
y
les per day
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2D irregular sampling: CGI jittering

◮ CGI anti-aliasing by jittering points
⊲ equivalent to irregular sampling in 1D

⊲ typi
ally sample irregularly at higher resolutionthan needed
⊲ then low-pass (by averaging)

⊲ don't use this for animations (only stills)
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2D possibilities: Hex grids

◮ sample onto hexagonal grid

⊲ pixels have nearly 
ir
ular shape

⋆ better mat
h to physi
al systems

ld e.g. printer dots

⊲ different symmetries

⊲ better behaved 
onne
tivity

⋆ only one 
ase

ld not edge + 
orners as for squares

⊲ Improved Angular Resolution. With more lateralneighbors, 
urves and edges 
an be followedmore easily and a

urately
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Hexagonal grids

◮ we 
an get a hexagonal sampling grid by
⊲ start with a re
tangular grid
⊲ rotate by 45 degrees

⊲ stret
h so that adja
ent samples areequi-distant

re
tangular grid rotate stret
h verti
ally hexagonal grid
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Hexagonal Fourier Transform

◮ transforms above tell us how to take FT

⊲ rotating an image

⇒ rotate FT

⊲ stret
h image (in one dire
tion)

⇒ squeeze the FT in the same dire
tion

◮ in square grid distan
e between samples

⊲ horizontal or verti
al distan
e is 1

⊲ diagonal, distan
e is √
2

⊲ Nyquist frequen
y is different for diagonal

◮ in hex grid distan
e between samples

⊲ is always one

⊲ Nyquist frequen
y is same in six dire
tions
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Sparse signals and


ompressive sensing
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Generalization of L-S periodogram

The L-S periodogram is a spe
ial 
ase of a more generalset of results.

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.67/83

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.67/83

Sparse des
riptions

◮ we should now be familiar with the idea of a basis
⊲ simple transforms 
hange basis
⊲ mostly we 
onsider orthogonal bases
⊲ non-redundant, i.e., ef�
ient

⋆ but perhaps we get something if we allowredundan
y

◮ Why transform: sparse des
ription of data 
an beuseful

⊲ this is one reason why the FT 
an be useful

⊲ transform into a basis where the des
ription ofthe signal is sparse
⊲ if the des
ription is sparse, then we 
an
ompress the signal
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Sparse des
ription example 1
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A simple sine wave 
an be represented by one number in the Fourier domain, i.e. it has asparse representation.
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Sparse des
ription example 2
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Two sine waves represented by two numbers.
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Sparse des
ription example 3

0 0.2 0.4 0.6 0.8 1
−5

0

5

time (seconds)

0 10 20 30 40 50
0

1

2
x 10

4

frequency (Hz)

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.71/83

A signal 
onstru
ted of 4 sine waves represented by 4 numbers in the Fourier domain.
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Sparse des
ription example 4

The following is a sine, plus a �spike�
◮ To represent this in either Fourier or �delta� basisrequires all basis terms.
◮ but with both, we 
an represent it as

x(t) = sin(t)+δ(t − t0)
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Remember that the FT of a delta fun
tion is

F {δ(t − t0)} = e−i2πst0whi
h means that in the Fourier basis, we need all of the possible basis fun
tions e−i2πs inorder to represent just one delta fro the time domain. By duality, although the sine 
an berepresented sparsely in the Fourier domain, it 
an only be represented by a linear 
ombinationof (almost) all of the deltas in the time-domain.
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Basis pursuit

◮ There is no standard orthonormal basis that allowsus to represent a spike plus a sine wave.

◮ We are really pi
king and 
hoosing the �best bits�of two different bases.

◮ Allows us to �nd a sparse des
ription of our data

⊲ might allow analysis, 
ompression, ...

◮ So we go in pursuit of a basis
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Di
tionary

◮ A di
tionary allows us to des
ribe words
◮ we want a di
tionary for our signals
◮ we want a way to translate into the di
tionary
◮ we want ways to provide translation betweendifferent languagesLets sti
k to linear 
ombinations, i.e. let us des
ribe oursignal by a linear 
ombination

x = ∑
i

αiφi

for some set of atoms φi from our di
tionary D .
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Sparse re
overy

How 
an we obtain su
h a representation?

◮ we 
an no longer rely on a simple transform

◮ the Di
tionary 
ould be quite large

⊲ sear
hes through it for a sparse representationwould take too long

⊲ in fa
t, NP hard

⊲ 
orresponds to minimizing the l0 norm

⊲ i.e., we try to solve the optimization problem

minimize ∑
i:αi 6=0

1 such thatx = ∑
i

αiφi
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Norms revisitedThere are a group of norms on R
n 
alled the l p normsde�ned by

||x||p =

[

n

∑
i=1

|xi|p
]1/p

Simple examples are

◮ l2: de�ned by ||x||2 =
[

∑n
i=1 |xi|2

]1/2

⊲ related to the RMS value
◮ l1: de�ned by ||x||1 = ∑n

i=1 |xi|
⊲ related to the mean absolute value

◮ l0: de�ned by ||x||0 = ∑n
i=1 I(xi 6= 0) = ∑i:xi 6=01

⊲ just 
ounts the number of non-zero terms of x
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Remember a norm on a ve
tor spa
e S is a real-valued fun
tion(al) whose value at x ∈ S isdenoted ||x||, and has the properties

||x|| ≥ 0 (1)

||x|| = 0 iff x = 0 (2)

||αx|| = α||x|| (3)

||x+y|| ≤ ||x||+ ||y|| (the triangle inequality) (4)A ve
tor spa
e equipped with a norm is 
alled anormed ve
tor spa
e.See le
ture 6 for more information.
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Sparse re
overy via l1 norm

The problem above 
onsists of

minimize ||x||0 such thatx = ∑
i

αiφi

However, various papers have shown that for very many
ases, one gets a good approximate solution to the aboveoptimization problem by solving

minimize ||x||1 such thatx = ∑
i

αiφi
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Minimization of the l1 normWe 
an rewrite

minimize ||x||1 such thatx(k) = ∑
i

αiφi(k)

as

minimize ∑
i

εi

such that
x(k) = ∑

i

αiφi(k)

−εi ≤ αi ≤ εiThis is just a linear program, and 
an be solved bySimplex, or interior point methods for quite largeproblems.
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Example
Try to represent the following signal using Fourier andspike basis
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Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.79/83

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.79/83

Example
Result of the l1 minimization
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% file: sparse_recovery.m, (c) Matthew Roughan, Tue Aug 22 2 006
%
clear;
path(’/home/mroughan/src/matlab/Michael_Saunders_St andford/’, path);
path(’/home/mroughan/src/matlab/NUMERICAL_ROUTINES/ ’, path);

N = 3000;
x = (1:N)/N;
f = 3;
y = sin(2 * pi * f * x);
y(floor(N/2.8)) = y(floor(N/2.8)) + 1;

figure(1)
plot(y,’b’, ’linewidth’, 3);
set(gca, ’linewidth’, 3, ’xtick’, [], ’ytick’, []);
% axis off
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 25 10])
print(’-depsc’, sprintf(’Plots/sparse_recovery.eps’, i));

N = 30;
% N = 5;
x = (0:N-1)/N;
f_0 = 3;
y = sin(2 * pi * f_0 * x);
k_0 = floor(N/1.9);
y(k_0) = y(k_0) + 1;

figure(2)
hold off
plot([x; x], [zeros(size(y)); y],’b’, ’linewidth’, 3);
hold on
plot(x, y, ’bo’, ’linewidth’, 4);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 28 10])
print(’-depsc’, sprintf(’Plots/sparse_recovery_2.eps ’, i));

z = log10(abs(fftshift(fft(y))).ˆ2);
figure(3)
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Appli
ation

One possible appli
ation is anomaly dete
tion in traf�
data

◮ traf�
 data shows periodi
ities

⊲ daily (diurnal) 
y
les (people sleep)

⊲ weekly 
y
les (people take the weekend off)

◮ anomalies (e.g. problems like DoS atta
ks) oftenappear as spikes

◮ if we separate the two, we 
an �nd the problems.
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Why does it work

Assume sparse representation exists

◮ then it exists in one of a set of subspa
es that areparallel to axes of R
n

◮ l0 minimization has to sear
h these
◮ l2 looks for solution 
losest (using Eu
lideandistan
e) to a translated subspa
e (given by
onstraints).

◮ l1 looks for solution 
losest (using 
he
ker distan
e)to a translated subspa
e (given by 
onstraints).
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Relation to L-S periodogram

◮ L-S periodogram is impli
itly assuming that thesignal representation is sparse in the Fourier basis

◮ do a �least-squares� �t

⊲ tests ea
h basis fun
tion against the signal

◮ perhaps we 
an do better using l1 normMinimization?
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