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Self-similarity in the
frequency domain
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This lecture concerns a number of advanced topics: fractals and wavelets, and non-standard
sampling. Note that this material is not examinable this year.
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Self-similarity Self-similarity: Koch Snowflake

So, Nat'ralists observe, a flea

Hath smaller fleas that on him prey;
And these have smaller still to bite ‘em
And so proceed ad infinitum

Jonathon Swift, 1733

Great fleas have little fleas upon their backs to bite ‘em,

And little fleas have lesser fleas, and so ad infinitum.

And the great fleas themselves, in turn, have greater fleas to go on;
While these again have greater still, and greater still, and so on.

De Morgan: A Budget of Paradoxes, p. 377.
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Links
http://mathworld.wolfram.com/KochSnowflake.html
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http://mathworld.wolfram.com/KochSnowflake.html

Self-similarity: IFS Fern Mandelbrot set I

C code from
http://astronomy.swin.edu.au/~pbourke/fractals/

http://alephO.clarku.edu/~djoyce/julia/julia.html
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Links:
http://www.iemar.tuwien.ac.at/modul23/Fractals/subp ages/33IFS.html
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http://astronomy.swin.edu.au/~pbourke/fractals/
http://www.iemar.tuwien.ac.at/modul23/Fractals/subpages/33IFS.html
http://aleph0.clarku.edu/~djoyce/julia/julia.html

Mandelbrot set IT

http://alephO.clarku.edu/~djoyce/julia/julia.html
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Mandelbrot set ITI

% 5 .;-f?-‘ %:;} 22

e.com/softsource/fractal.html

http://www.softsourc
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Statistical Self-similarity

Statistical Self-similarity (SS)
» this is not a course on fractals
» Fractals (such as above) are deterministic
» we are interested in statistical properties of traffic
» look for statistical self-similarity
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Statistical Self-similarity

Fractional Brownian Motion
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The three curves show successive zooms of a sample of fractional Brownian Motion (fBM).
The larger red curve shows a zoom of the red region of the blue curve, and the larger green
curve shows a zoom of the green region on the red curve.
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Ethernet traffic

Traditional Model, H=0.5

Real Data, H~0.8

Time Unit = 0.01 Second
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SS block aggregation definition
(another definition exists)

We define he aggregated time series {X,Em)} at level mby

~ Xk-ymeat o+ Xem
— — .

X"

A stationary time series X = {X1,Xy,...} is called
self-similar with Hurst parameter H if, for all m, the

aggregated process m" " X" has the same distributions
as X.
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The curves show samples of Ethernet traffic (red), in packets per time interval, compared
with a simple traditional model for traffic. The time interval use for measurement changes
from the top to the bottom, the top has a fine resolution, or 0.01 seconds, with the lower two
becoming successively coarser. Going from bottom to top, the region shown in black on the
bottom graph is expanded out to form the next graph and similarly for the construction of the
top graph.
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Example fGN: (H = 0.5)
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Example fGN: (H = 0.75)
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Example fGN: (H = 0.99)
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Properties of Self-Similar Process

» Stationary so EX = 0, VarX; = ¢? (constant).
» Cov(Xi,X k) depends only on the lag k and is given by

1
¥(k) = 50 ([k+ 11 = 2K + k= 1.

» Cov(X'™, X)) is given by

y(K) = %mZ(H%2 (k1P — 2K+ [k 112).
> of the
- Pk
» The varies with the level as

VarX™ = mPH-Yg2,
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Note that as H changes, the character of the curves changes. It has more correlation, and so
we see “runs” of similar values, or apparent trends.
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Long-range dependence

Long-range dependence (LRD) for stationary process
» LRD = slow (power-law) decay in the autocovariance
Vx (K) ~ ¢y k|~
as k — o, for some a € (0,1)
» implies for all N

é Y (K) — o

this is sometimes used as an alternative definition
» also called long-memory process
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LRD and SS

Notice that self-similarity implies LRD with
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The three graphs show the empirical autocorrelation function for three different values of
H. The left graph shows the autocorrelation using linear axes, and the right graph shows a
log-log graph, i.e., the axes are log-scale. Note that the autocorrelations are approximately
linear (with some noise due to the empirical nature of the graphs shown) when examined on
the log-log graph. This is a general property of power-laws.

The horizontal dashed line shows the 95% significance level. Values under this could be
considered too small to be significant. Note that the red curve lies almost entirely below this
line, indicating an uncorrelated process.
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LRD in the frequency domain

Long-range dependence (LRD) can also be defined in the
frequency domain using the Fourier transform of the
autocovariance

fx(s) ~ct|s 7%, |s| — 0

When a = 1 we get 1/f noise, but the term is often
applied to the range of values of a =2H —1.

» frequency spectrum of white noise is flat
» frequency spectrum of Brownian motion is 1/f2
» frequency spectrum of "pink” noise is 1/ f
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Example fGN spectrum (H = 0.5)
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Example fGN spectrum (H = 0.75) Example fGN spectrum (H = 0.99)
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1/f noise

LRD and SS are also seen elsewhere

» cardiac rhythms (in healthy hearts)

» hydrological data (rainfall, and river flow)

> Hurst's early work was actually in Nile river data
music seems to have similar characteristics
turbulence
chaotic processes in general

vV v.vyy

financial modelling
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Connection to Fractals

Fractals more concerned with scaling laws at small scales
and high-frequencies

fe(s) ~crls] ™, |8 — o0

Hdlder exponent h= (a —1)/2
» If 0<h<1the Hausdorff dimensionD=5—0/2
» If h<0sample paths are everywhere discontinuous
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fractional Gaussian Noise

f6GN (fractional Gaussian Noise) is stationary Gaussian
process % with mean y, variance o? and autocorrelation
function L

p(k) = 5 (I 12 = [k k- 1)

which asymptotically goes like
pk) ~H@H -K*2, k—oo

so ¢, =H(2H —1). In the frequency domain,

fx(s) ~ cels* ="

, |sl—0
where now
¢ = 02-2(2m) M H(2H — 1) (2H — 1) sin(T(1— H)),

where ' (x) is the gamma function.
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fractional Gaussian Noise

Synthesis of fGN:

» Durbin-Levinson: generate white noise, and then
impose exact correlation structure. Slow O(N?)
algorithm

» Spectral synthesis:

> generate white noise

> take FFT
multiply by desired spectrum

> inverse FFT, to get back to time domain

v

Note that discrete version of continuous process is no
longer exactly self-similar.

Transform Methods & Signal Processing (APP MTH 4043): leztl? — p.26/83

Transform Methods & Signal Processing (APP MTH 4043): |estl2 — p.25/83

Transform Methods & Signal Processing (APP MTH 4043): le=tl? — p.26/83




fractional Brownian Motion

The (non-stationary) Gaussian process with
given by

M(st) = %02 (M — (t—9)™ +t*),

variance o and expectation O is called
(fBM).

Note the increment process
of fBM is fGN, just as the

increments of BM are white
noise.
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Wavelets: interpretation

» Multi-Resolution Approximation (MRA)
> aggregation at different scales is like
approximating the data at different scales
> data stats have known scaling properties
> a more general way of doing multi-scale
approximation is wavelets
» sub-band filters (logarithmically placed)
> logarithmically placed, so natural log scale arises
in frequency domain.
> sub-bands sampled at frequency appropriate to
the bandwidth
> has the advantage of de-correlation of wavelet
coefficients
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Dyadic grid

Dyadic grid has self-similar scaling behavior!
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Wavelet's as sub-band filters

The idea (looking across frequencies or scales) is that
the transform breaks frequency spectrum into bands.
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Wavelet's as sub-band filters Wavelets and scaling

Each band equal size on log(frequency) graph » the wavelet transform de-correlates details, so can
think of each series of {dx}kez for each j as a time

s series, with short-range correlations.
2 » wavelet conditions ensure
i E[djx] =0
S i T il » we know the distribution of energy in each sub-band
g % % % » this ‘r.r'qnslafes to energy in each scale of wavelet
5 § § § coefficients djy, e.g.
§ Var [dj7k] =E [djz,k} = Llj
» we form an estimator of p; by
1N
log(frequency) [ = N Z djudl®
J k=1
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Wavelets and scaling

fu(S) ~ ¢ |s|‘°‘

di= (W0 = / 5V v (5 k) o

E [d?,] = 21%C
where
C= / s -%|w* (s) [2ds

S0
log, E [d?,] = ja+log,ciC

Perform regression on log, {l; vs the octave j.
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Logscale diagram
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Logscale diagram Wavelet estimator properties

In fact, we can approximate » asymptotically efficient and unbiased
i1 > almost as accurate as Whittle (MLE)
log, 1 ~N (jd +log, c;C, m) » joint estimator of H and ¢,

» known variance of estimates
» robustness
> hon-Gaussianity

' _ > trends in the data
> perform a weighted regression > short-range correlative structure
>

» estimate covariance of estimates of a and cs much better than Whittle in these cases

So we can

» estimate confidence intervals for log,fij on the
Logscale diagram

» actually worth adding a small correction to get
yj = log, 1; — g;j (because log and expectation don't
commute)

http://www.cubinlab.ee.mu.oz.au/~darryl/secondorder _code.html/
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Non-standard sampling
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Shannon theorem

"If a function f(t) contains no frequencies higher than W
cps, it is completely determined by giving its ordinates
at a series of points spaced (1/2W) s apart.”

Claude Shannon, "Communications in the presence of noise”, Proc.IRE,
37, pp.10-21, 1949.
» uniform sampling
> samples spaced a uniform distance apart
» Nyquist limit

H.Nyquist, "Certain topics in telegraph transmission theory”,
AIEE Trans., 47, pp.617-644, 1928.

» Implicitly, we can reconstruct f(t) from its samples
> if the signal is bandlimited
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Shannon theorem

Proof sketch: Assume function is bandlimited so
F(s) =0 for |s| >W, then the IFT is

F(t) = /ZF(s)eiZ”S‘ds= /VVVVF(s)éZTBtds

If instead, we make, F periodic, with period 2W then we
can find a Fourier series for it, e.g.

where,

_ 1 W —ims/W 4o __ 1 n
An_ﬁ/WF(s)e ds_ﬂf<ﬂ>
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Shannon theorem

Proof sketch:

We can represent F(s) perfectly with the Fourier series
coefficients A, but these are just proportional to the
function sampled at uniform intervals, e.g. A, O f (5).

Hence, the samples completely define the FT F, and
hence the function f. O
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Shannon interpolation

Reconstruction of original signal from IFT

W .
f(t) = /_WF(s)e'ZT'Stds
— /W iAneims/WeiZTlstds

Wizfoo

= 3 A rsawyer A gs

j=—o00

= i 2\NA]/oo r(—s)e?™2Vtn gg

= '_i f(%) sinc(2Wt—n)
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Shannon interpolation

Assume we sampled at the Nyquist rate, i.e. fs=2W, or
ts=1/2W, then the sample points would be

"(aw)

ft) = Z f(%)sinc(zwt—n)

i=—o0

The summation

represents a convolution of the sampled signal with a sinc
function. Now we know the sinchas a simple rectangular
transfer function, and so it acts as a perfect low-pass
filter.
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The last step follows because
» The IFT of r(s) is sinqt)

» Whent=m/2W for man integer, then 2Wt—n is also an integer m—n. Note that
sindm—n) = mn.

» Hence at those points we get

FM/2W) = 5 WASINC(ZWE—N) = 5 2WASm = 2WA,

i=—o0 i=—o0
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Shannon interpolation

Interpretation

» convolution with sinc
» equivalent to ideal (rectangular) bandpass filter

A A
samples reconstructed function
AN ideal

/‘— «— o analogue
‘ : . lowpass

— — P

, ~0—

f._

Y

» this is essentially what a Digital fo Analogue
converter tries to do

» have to build analogue filter — hard to make it ideal
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Other sampling schemes

dyadic grid (wavelets)
ordinate and slope sampling
interlaced sampling

implicit sampling

irregular sampling
hexagonal sampling

vV vV vV vV vV VvV Y

many others ...
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Ordinate and Slope Sampling

» sample the value, and derivative at a point

fa

T
uniform samples T

» Shannon theorem for ordinate/slope sampling
We can reconstruct a function from knowledge of
its ordinate and slope at every other sample point.

» e.g. half the Nyquist sampling rate
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Interlaced sampling

s

uniform samples —_—

I A R B
A i p4 o

. ——
interlaced samples ot

» signal is uniquely determined given a series of
samples at recurrent sample points

tom=1p+ mN
pm~—/*p W
forp=1,2....Nand meZ
> interlaced sampling example above has N = 2

» limit &t — O, is equivalent to ordinate/slope sampling
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Implicit sampling

» e.g. sampling at zero crossings

yo

41—
implicit samples
» Applications:
> specify filter by zero crossings
> reconstruct an image
t ) iy
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Implicit sampling theory

» "Information in the Zero Crossings of Bandpass
Signals", B.F. Logan, Bell System Tech. Journal, 56,
pp. 487-510, April 1977.

> a sighal is uniquely reconstructible from its zero
crossings if
* The signal x(t) and its Hilbert transform Xy (t)
have no zeros in common with each other.
x The frequency domain representation of the
signal is at most 1 octave long, in other words,
it is bandpass-limited between some B and 2B.

» "Reconstruction of Two-Dimensional Signals From
Threshold Crossings”, A. Zakhor and A. V.
Oppenheim, Proceedings of the IEEE, January 1990,
vol 78 no 1 pp 31-B5
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Irregular sampling

» not all sampling is on a regular grid

> Astronomical data depends on when you can

make observations
* clouds might get in the way

> Geophysical data
x depends on which rock strata you can find

> Poisson sampling used in Internet performance
measurements

> even regular samples have jitter

» all previous work assumed regular sampling
> how can we deal with irregularity?
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Non-bandlimited signals

» we can't always pre-filter analogue signal with a
band-pass before sampling

> Astronomical data can't be obtained between
samples (e.g. clouds)

> Internet performance measurements are made
with probe packets

> Acoustic measurements of position of an object
* bounce ultrasound pulse off an object every

half a second
x don't see what happens in between

» aliasing is a problem without pre-filtering
> how can we cope without pre-filtering?
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Astronomical data

» apparent magnitude of a variable star
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data courtesy of Laurent Eyer, <Laurent.Eyer@obs.unige.ch>
http://obswww.unige.ch/~eyer/
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Astronomical data

> we can see
> data are not uniformly spaced
* there is no way to “fix" this

> no obvious period
» no pre-filter has been applied to the samples

» can we still look for periodicities in the data?
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http://obswww.unige.ch/~eyer/

Periodogram

» for uniformly sampled data X,, use the periodogram
2

Pl = CFT(P =

N-1
Z)xne—iZlen/N
n=

» rewrite complex exponential in terms of trig.fn.s

1 | /N2 2 /N-1 2
P (k) = N [( Z}chos(ZT[kn/N)> + ( Z}anin(ZTtkn/N)> ] :

» write in terms of frequency f =k/(Nts;) and sample

1| /N2 2 /N-1 2
P(f) = N (;XnCOQZHan)> + ( Zoxnsin(ZHan)) )
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Lomb-Scargle Periodogram

» for irregularly sampled data we use the
Lomb-Scargle periodogram

_1 (Zhog (X(T) — X) cog(2mf (Tk—'[)))z

2 S Ngcog(2mf (Ty—1))

(EN-HX(T) — X) sin(2mf (T — 1))
S N sin?(2mf (T — 1)) ’

where X is the mean value of X, and T satisfies
N—-1.;
tan(4mfT) — zﬁi‘i 5|n(4nka).
S kg COS4Ttf Ty)
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Lomb-Scargle Periodogram explained

» think of a periodogram as fitting sine and cosine
functions to the data
> standard periodogram does a least-squares fit
* assuming uniform samples
> Lomb-Scargle Periodogram does the same
= but allowing arbitrary sampling

» T allows a shift in time o make everything
time-shift invariant

» Fast O(NlogN) variants exist (similar to FFT)
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Nyquist limits

For uniform sampling, we must obey Nyquist limit
» or we get aliasing

For non-uniform sampling, we don't need to follow the
standard (uniform sampling) Nyquist limit

» we don't need o bandpass signal before sampling!
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Nyquist limits

Intuition:

» for low-frequency, jitter in sampling time, is
equivalent to error, or similar order of magnitude in
sample value
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Nyquist limits

Intuition:

» for high-frequency, jitter in sampling time,
introduces errors of similar magnitude to signal

o
©

In some sense, there is some filtering going on here.
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Lomb-Scargle Periodogram examples

» variable star data from before
50 T :

(0}
40f

power

10 15 20
frequency (cycles per day)
Average measurement interval = 10.427 days.
Nyquist frequency ~ 1/10-th cycle per day.
Peak is at 11.7 cycles per day.
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Folded Plots

Superimposes a fime series upon itself with respect to a
specified period.

» if period of fold is correct, then measurements
would line up
A

periodic signal folded plot

T e
phase
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Folded Plot example 2D irreqular sampling: CGI jittering

» variable star data from before
> period 117 cycles per day

0.4
03f  =*, o
02} *» % P
* %
) H
0.1f xx xx 1
> ot * g} . .. .. . .
of £ ,‘5 ) % » CGI anti-aliasing by jittering points
Loab* Jg ¥ . > equivalent to irregular sampling in 1D
ool {,&E * _ > typically sample irregularly at higher resolution
than needed
0% 0.5 1 15 then | b i
5 e : > then low-pass (by averaging)
> don't use this for animations (only stills)
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2D possibilities: Hex grids

» sample onto hexagonal grid
> pixels have nearly circular shape
x better match to physical systems
+ e.g. printer dots
> different symmetries

> better behaved connectivity
* only one case
+ not edge + corners as for squares
> Improved Angular Resolution. With more lateral

neighbors, curves and edges can be followed
more easily and accurately
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Hexagonal grids

» we can get a hexagonal sampling grid by
> start with a rectangular grid
> rotate by 45 degrees

> stretch so that adjacent samples are
equi-distant

rectangular grid  rotate stretch vertically hexagonal grid
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Hexagonal Fourier Transform

» transforms above tell us how to take FT
> rotating an image
= rotate FT
> stretch image (in one direction)
= squeeze the FT in the same direction
» in square grid distance between samples
> horizontal or vertical distance is 1
> diagonal, distance is v/2
> Nyquist frequency is different for diagonal
» in hex grid distance between samples
> is always one
> Nyquist frequency is same in six directions
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Sparse signals and
compressive sensing
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Generalization of L-S periodogram

The L-S periodogram is a special case of a more general
set of results.
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Sparse descriptions

» we should now be familiar with the idea of a basis
> simple transforms change basis
> mostly we consider orthogonal bases

> non-redundant, i.e., efficient
* but perhaps we get something if we allow
redundancy

» Why transform: sparse description of data can be
useful
> this is one reason why the FT can be useful

> transform into a basis where the description of
the signal is sparse

> if the description is sparse, then we can
compress the signal
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Sparse description example 1

0 0.2 0.4 0.6 0.8 1
time (seconds)

Sparse description example 2

0 0.2 0.4 0.6 0.8 1
time (seconds)

0 10 20 30 40 50
frequency (Hz)
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0 10 20 30 40 50
frequency (Hz)
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A simple sine wave can be represented by one number in the Fourier domain, i.e. it has a
sparse representation.
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Two sine waves represented by two numbers.
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Sparse description example 3

0 0.2 0.4 0.6 0.8 1
time (seconds)

0 10 20 30 40 50
frequency (Hz)
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Sparse description example 4

The following is a sine, plus a "spike”

AVAVAY

» To represent this in either Fourier or "delta” basis
requires all basis terms.

» but with both, we can represent it as

X(t) = sin(t) + 8(t —to)
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A signal constructed of 4 sine waves represented by 4 numbers in the Fourier domain.
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Remember that the FT of a delta function is
F{d(t—to)} = e 120

which means that in the Fourier basis, we need all of the possible basis functions e 2™ in
order to represent just one delta fro the time domain. By duality, although the sine can be
represented sparsely in the Fourier domain, it can only be represented by a linear combination
of (almost) all of the deltas in the time-domain.
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Basis pursuit

» There is no standard orthonormal basis that allows
us to represent a spike plus a sine wave.

» We are really picking and choosing the "best bits"
of two different bases.

» Allows us to find a sparse description of our data
> might allow analysis, compression, ...

» So we go in pursuit of a basis
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Dictionary

» A dictionary allows us to describe words

» we want a dictionary for our signals

» we want a way to translate into the dictionary

» we want ways fo provide translation between
different languages

Lets stick to linear combinations, i.e. let us describe our
signal by a linear combination

XZme

for some set of atoms @ from our dictionary D.
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Sparse recovery

How can we obtain such a representation?
» we can ho longer rely on a simple fransform

» the Dictionary could be quite large

> searches through it for a sparse representation
would take too long

> in fact, NP hard
> corresponds to minimizing the 1° norm
> i.e., we try to solve the optimization problem

minimize Z 1 such that(:ZO(i(n
i:0;#0 1
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Norms revisited

There are a group of norms on R" called the IP norms

defined by
ixlp=| 3 b4l

Simple examples are

> 12 defined by [x[2 =[Sy x[?] "
> related to the RMS value
» |1 defined by |x||1 = S, x|
> related to the mean absolute value
> 1% defined by [X[lo=311(% # 0) = Fixx0l
> just counts the number of non-zero terms of x

1/p
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Remember a norm on a vector space Sis a real-valued function(al) whose value at x € Sis
denoted ||x|, and has the properties

Xl >0 (1)
X|=0iffx=0 2)
[lax]| = of|x] 3)
Ix+yl < IIX| + Iyl (the triangle inequality) (4)

A vector space equipped with a norm is called a
normed vector space.
See lecture 6 for more information.
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Sparse recovery via |t norm

The problem above consists of
minimize|[x|lo such thax =% oi@
|
However, various papers have shown that for very many

cases, one gets a good approximate solution to the above
optimization problem by solving

minimize||x||; such tha = Z (o {0
|
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Minimization of the 11 norm

We can rewrite
minimize x|z such thak(k) = Zaicn(k)
|
as
minimize &
.z i
such that
xk) = ¥ aia(k
|
—& <0 <¢§

This is just a linear program, and can be solved by
Simplex, or interior point methods for quite large
problems.
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Example Example

Try to represent the following signal using Fourier and Result of the I minimization
spike basis ' ' ' ' ' ' ' ' '
o 1F 7
2 T T T T T T T T T a
o]
1.5F b go.ooooooooooooo 00 000000000000 O -
L 73
-1 L L L L L L L L L
0.5} I I I I I 1 o 01 02 03 04 05 06 07 08 09 1
v, 2 ® ° ° ) o E . . . . . .
-0.5} ] 2 1F *  cosine |
©
1 . . . . . . . 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .g » e ° ° ° ° ° ° ° ° ° ° ° )
Perform the I* minimization 2
-1 L L L L L L
0 2 4 6 8 10 12 14
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% file: sparse_recovery.m, (c) Matthew Roughan, Tue Aug 22 2 006
%
;C)Iaetzr(;'/home/mroughan/src/matlab/Michaelisaundersisl andford/’, path);
path(’’home/mroughan/src/matlab/NUMERICAL_ROUTINES/ ', path);
N = 3000;
x = (LN)/N;
f=3

y = sin(2 *pi *f*x);
y(floor(N/2.8)) = y(floor(N/2.8)) + 1;

figure(1)

plot(y,'b’, 'linewidth’, 3);

set(gca, ‘linewidth’, 3, 'xtick’, [], 'ytick’, [1);

% axis off

set(gcf, 'PaperUnits’, 'centimeters’, 'PaperPosition’, [0 0 25 10))
print(-depsc’, sprintf(’Plots/sparse_recovery.eps’, i)):

N = 30;

% N = 5;

x = (0:N-1)/N;
fo0=23

y = sin(2 *pi *f_0 *x);
k_0 = floor(N/1.9);
y(k_0) = y(k 0) + 1;

figure(2)

hold off

plot([x; X], [zeros(size(y)); y].'b', 'linewidth’, 3);
hold on

plot(x, y, 'bo’, ’linewidth’, 4);

set(gca, 'linewidth’, 3, ‘fontsize’, 18);

set(gcf, 'PaperUnits’, 'centimeters’, 'PaperPosition’, [0 0 28 10))
print('-depsc’, sprintf(’Plots/sparse_recovery_2.eps M)A
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finuira(2)




Application

One possible application is anomaly detection in traffic
data

» traffic data shows periodicities
> daily (diurnal) cycles (people sleep)
> weekly cycles (people take the weekend off)

» anomalies (e.g. problems like DoS attacks) often
appear as spikes

» if we separate the two, we can find the problems.
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Why does it work

Assume sparse representation exists

» then it exists in one of a set of subspaces that are
parallel o axes of R"

» 1% minimization has to search these

» 12 looks for solution closest (using Euclidean
distance) to a translated subspace (given by
constraints).

» |1 looks for solution closest (using checker distance)
to a translated subspace (given by constraints).
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Relation to L-S periodogram

» L-S periodogram is implicitly assuming that the
signal representation is sparse in the Fourier basis
» do a"least-squares” fit
> tests each basis function against the signal

» perhaps we can do better using I* norm
Minimization?
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