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Self-similarity in the

frequen
y domain
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Self-similaritySo, Nat'ralists observe, a �eaHath smaller �eas that on him prey;And these have smaller still to bite 'emAnd so pro
eed ad in�nitum Jonathon Swift, 1733Great �eas have little �eas upon their ba
ks to bite 'em,And little �eas have lesser �eas, and so ad in�nitum.And the great �eas themselves, in turn, have greater �eas to go on;While these again have greater still, and greater still, and so on.De Morgan: A Budget of Paradoxes, p. 377.
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Self-similarity: Ko
h Snow�ake
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Self-similarity: IFS Fern

C 
ode from
http://astronomy.swin.edu.au/~pbourke/fractals/
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Mandelbrot set I
http://aleph0.clarku.edu/~djoyce/julia/julia.html
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Mandelbrot set II
http://aleph0.clarku.edu/~djoyce/julia/julia.html
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Mandelbrot set III

http://www.softsource.com/softsource/fractal.html
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Statisti
al Self-similarity

Statisti
al Self-similarity (SS)this is not a 
ourse on fra
talsFra
tals (su
h as above) are deterministi
we are interested in statisti
al properties of traf�
look for statisti
al self-similarity
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Statisti
al Self-similarity
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Ethernet traf�
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Statisti
al Self-similarity

SS blo
k aggregation de�nition(another de�nition exists)We de�ne he aggregated time series {X(m)
k } at level m by

X(m)
k :=

X(k−1)m+1 + · · ·+Xkm

m
.

A stationary time series X = {X1,X2, . . .} is 
alledself-similar with Hurst parameter H if, for all m, theaggregated pro
ess m1−HX(m) has the same distributionsas X.
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Example fGN: (H = 0.5)
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Example fGN: (H = 0.75)
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Example fGN: (H = 0.99)
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Properties of Self-Similar Pro
essStationary so EXi = 0, VarXi = σ2 (
onstant).Cov(Xi,Xi+k) depends only on the lag k and is given by
γ(k) =

1
2

σ2
(

|k+1|2H −2|k|2H + |k−1|2H
)

.

Cov(X(m)
i ,X(m)

i+k ) is given by
γ(k) =

1
2

m2(H−1)σ2
(

|k+1|2H −2|k|2H + |k−1|2H
)

.

Asymptoti
 behavior of the auto
orrelation

lim
k→∞

ρk

k2(H−1)
= H(2H −1).

The varian
e varies with the aggregation level asVarX(m) = m2(H−1)σ2,

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.16/83



Long-range dependen
eLong-range dependen
e (LRD) for stationary pro
essLRD = slow (power-law) de
ay in the auto
ovarian
e
γX(k) ∼ cγ|k|−(1−α)as k→ ∞, for some α ∈ (0,1)implies for all N

∞

∑
k=N

γX(k) → ∞this is sometimes used as an alternative de�nitionalso 
alled long-memory pro
ess
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LRD and SSNoti
e that self-similarity implies LRD with
α = 2H −1for 0.5≤ H < 1, and 0≤ α < 1

0 200 400 600 800 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
H = 0.50
H = 0.75
H = 0.99

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

H = 0.50
H = 0.75
H = 0.99

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.18/83



LRD in the frequen
y domain

Long-range dependen
e (LRD) 
an also be de�ned in thefrequen
y domain using the Fourier transform of theauto
ovarian
e

fx(s) ∼ cf |s|−α , |s| → 0When α = 1 we get 1/f noise, but the term is oftenapplied to the range of values of α = 2H −1.frequen
y spe
trum of white noise is �atfrequen
y spe
trum of Brownian motion is 1/ f 2frequen
y spe
trum of �pink� noise is 1/ f

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.19/83



Example fGN spe
trum (H = 0.5)
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Example fGN spe
trum (H = 0.75)
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Example fGN spe
trum (H = 0.99)
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1/f noiseLRD and SS are also seen elsewhere
ardia
 rhythms (in healthy hearts)hydrologi
al data (rainfall, and river �ow)Hurst's early work was a
tually in Nile river datamusi
 seems to have similar 
hara
teristi
sturbulen
e
haoti
 pro
esses in general�nan
ial modelling
Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.23/83



Conne
tion to Fra
talsFra
tals more 
on
erned with s
aling laws at small s
alesand high-frequen
ies

fx(s) ∼ cf |s|−α , |s| → ∞Hölder exponent h = (α−1)/2If 0 < h < 1 the Hausdorff dimension D = 5−α/2If h < 0 sample paths are everywhere dis
ontinuous
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fra
tional Gaussian NoisefGN (fra
tional Gaussian Noise) is stationary Gaussianpro
ess Xt with mean µ, varian
e σ2 and auto
orrelationfun
tion

ρ(k) =
1
2

(

|k+1|2H −|k|2H + |k−1|2H
)

whi
h asymptoti
ally goes like
ρ(k) ∼ H(2H −1)|k|2H−2 , k→ ∞so cγ = H(2H −1). In the frequen
y domain,

fx(s) ∼ cf |s|1−2H , |s| → 0where now
cf = σ2

Z ·2(2π)1−2HH(2H −1)Γ(2H −1)sin(π(1−H)),where Γ(x) is the gamma fun
tion.
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fra
tional Gaussian NoiseSynthesis of fGN:Durbin-Levinson: generate white noise, and thenimpose exa
t 
orrelation stru
ture. Slow O(N2)algorithmSpe
tral synthesis:generate white noisetake FFTmultiply by desired spe
truminverse FFT, to get ba
k to time domainNote that dis
rete version of 
ontinuous pro
ess is nolonger exa
tly self-similar.
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fra
tional Brownian MotionThe (non-stationary) Gaussian pro
ess with 
ovarian
efun
tion given by

Γ(s, t) =
1
2

σ2
(

s2H − (t −s)2H + t2H
)

,

varian
e σ2 and expe
tation 0 is 
alled fra
tionalBrownian motion (fBM).Note the in
rement pro
essof fBM is fGN, just as thein
rements of BM are whitenoise.
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Wavelets: interpretationMulti-Resolution Approximation (MRA)aggregation at different s
ales is likeapproximating the data at different s
alesdata stats have known s
aling propertiesa more general way of doing multi-s
aleapproximation is waveletssub-band �lters (logarithmi
ally pla
ed)logarithmi
ally pla
ed, so natural log s
ale arisesin frequen
y domain.sub-bands sampled at frequen
y appropriate tothe bandwidthhas the advantage of de-
orrelation of wavelet
oef�
ients
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Dyadi
 grid

Dyadi
 grid has self-similar s
aling behavior!
fr

eq
u

en
cy

time
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Wavelet's as sub-band �ltersThe idea (looking a
ross frequen
ies or s
ales) is thatthe transform breaks frequen
y spe
trum into bands.
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Wavelet's as sub-band �ltersEa
h band equal size on log(frequen
y) graph
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p
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Wavelets and s
alingthe wavelet transform de-
orrelates details, so 
anthink of ea
h series of {d j ,k}k∈Z for ea
h j as a timeseries, with short-range 
orrelations.wavelet 
onditions ensure
E [d j ,k] = 0we know the distribution of energy in ea
h sub-bandthis translates to energy in ea
h s
ale of wavelet
oef�
ients d j ,k, e.g.Var [d j ,k] = E

[

d2
j ,k

]

= µjwe form an estimator of µj by

µ̂j =
1
Nj

Nj

∑
k=1

|d j ,k|2

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.32/83



Wavelets and s
aling

fx(s) ∼ cf |s|−α

d j ,k = 〈 f ,ψ j ,k〉 =

Z ∞

−∞
f (t)

1√
2 j

ψ∗
( t

2 j
−k
)

dt

E
[

d2
j ,k

]

= 2 jαcfCwhere

C =
Z ∞

−∞
|s|−α|Ψ∗ (s) |2dsso

log2E
[

d2
j ,k

]

= jα+ log2cfCPerform regression on log2 µ̂j vs the o
tave j .
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Logs
ale diagram
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Logs
ale diagram

In fa
t, we 
an approximate

log2 µ̂j ∼ N

(

jα+ log2cfC,
2 j+1

nln22

)

So we 
anestimate 
on�den
e intervals for log2 µ̂j on theLogs
ale diagramperform a weighted regressionestimate 
ovarian
e of estimates of α and cfa
tually worth adding a small 
orre
tion to get

y j = log2µj −g j (be
ause log and expe
tation don't
ommute)
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Wavelet estimator properties

asymptoti
ally ef�
ient and unbiasedalmost as a

urate as Whittle (MLE)joint estimator of H and cγknown varian
e of estimatesrobustnessnon-Gaussianitytrends in the datashort-range 
orrelative stru
turemu
h better than Whittle in these 
ases

http://www.cubinlab.ee.mu.oz.au/~darryl/secondorder_code.html/
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Non-standard sampling
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Shannon theorem�If a fun
tion f (t) 
ontains no frequen
ies higher than W
ps, it is 
ompletely determined by giving its ordinatesat a series of points spa
ed (1/2W) s apart.�Claude Shannon, �Communi
ations in the presen
e of noise�, Pro
.IRE,37, pp.10�21, 1949.uniform samplingsamples spa
ed a uniform distan
e apartNyquist limitH.Nyquist, �Certain topi
s in telegraph transmission theory�,AIEE Trans., 47, pp.617�644, 1928.Impli
itly, we 
an re
onstru
t f (t) from its samplesif the signal is bandlimited
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Shannon theoremProof sket
h: Assume fun
tion is bandlimited so
F(s) = 0 for |s| > W, then the IFT is

f (t) =

Z ∞

−∞
F(s)ei2πstds=

Z W

−W
F(s)ei2πstds

If instead, we make, F periodi
, with period 2W then we
an �nd a Fourier series for it, e.g.
F(s) =

∞

∑
i=−∞

Ane
iπns/W

where,

An =
1

2W

Z W

−W
F(s)e−iπns/W ds=

1
2W

f
( n

2W

)
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Shannon theoremProof sket
h:We 
an represent F(s) perfe
tly with the Fourier series
oef�
ients An, but these are just proportional to thefun
tion sampled at uniform intervals, e.g. An ∝ f
(

n
2W

).Hen
e, the samples 
ompletely de�ne the FT F , andhen
e the fun
tion f . 2
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Shannon interpolation

Re
onstru
tion of original signal from IFT
f (t) =

Z W

−W
F(s)e−i2πstds

=

Z W

−W

∞

∑
i=−∞

Ane
iπns/Wei2πst ds

=
∞

∑
i=−∞

An

Z ∞

−∞
r(s/2W)ei2πs(−t+n/2W) ds

=
∞

∑
i=−∞

2WAn

Z ∞

−∞
r(−s)ei2πs(2Wt−n) ds

=
∞

∑
i=−∞

f
( n

2W

)

sinc(2Wt−n)
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Shannon interpolation

Assume we sampled at the Nyquist rate, i.e. fs = 2W, or
ts = 1/2W, then the sample points would be

f
( n

2W

)

The summation

f (t) =
∞

∑
i=−∞

f
( n

2W

)

sinc(2Wt−n)

represents a 
onvolution of the sampled signal with a sincfun
tion. Now we know the sinchas a simple re
tangulartransfer fun
tion, and so it a
ts as a perfe
t low-pass�lter.
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Shannon interpolation

Interpretation
onvolution with sin
equivalent to ideal (re
tangular) bandpass �lter

reconstructed functionsamples

ideal

lowpass
analogue

this is essentially what a Digital to Analogue
onverter tries to dohave to build analogue �lter � hard to make it ideal
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Other sampling s
hemes

dyadi
 grid (wavelets)ordinate and slope samplinginterla
ed samplingimpli
it samplingirregular samplinghexagonal samplingmany others ...
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Ordinate and Slope Sampling

sample the value, and derivative at a point

st

time

uniform samples

Shannon theorem for ordinate/slope samplingWe 
an re
onstru
t a fun
tion from knowledge ofits ordinate and slope at every other sample point.e.g. half the Nyquist sampling rate
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Interla
ed sampling

uniform samples
ts

time

interlaced samples δ tsignal is uniquely determined given a series ofsamples at re
urrent sample points
tpm = tp +

mN
2Wfor p = 1,2, . . . ,N and m∈ Zinterla
ed sampling example above has N = 2limit δt → 0, is equivalent to ordinate/slope sampling
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Impli
it sampling

e.g. sampling at zero 
rossings
implicit samples

time

Appli
ations:spe
ify �lter by zero 
rossingsre
onstru
t an image
⇒
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Impli
it sampling theory

"Information in the Zero Crossings of BandpassSignals", B.F. Logan, Bell System Te
h. Journal, 56,pp. 487-510, April 1977.a signal is uniquely re
onstru
tible from its zero
rossings ifThe signal x(t) and its Hilbert transform XH(t)have no zeros in 
ommon with ea
h other.The frequen
y domain representation of thesignal is at most 1 o
tave long, in other words,it is bandpass-limited between some B and 2B.�Re
onstru
tion of Two-Dimensional Signals FromThreshold Crossings�, A. Zakhor and A. V.Oppenheim, Pro
eedings of the IEEE, January 1990,vol. 78, no. 1, pp. 31-55.
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Irregular sampling

not all sampling is on a regular gridAstronomi
al data depends on when you 
anmake observations
louds might get in the wayGeophysi
al datadepends on whi
h ro
k strata you 
an �ndPoisson sampling used in Internet performan
emeasurementseven regular samples have jitterall previous work assumed regular samplinghow 
an we deal with irregularity?
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Non-bandlimited signals

we 
an't always pre-�lter analogue signal with aband-pass before samplingAstronomi
al data 
an't be obtained betweensamples (e.g. 
louds)Internet performan
e measurements are madewith probe pa
ketsA
ousti
 measurements of position of an obje
tboun
e ultrasound pulse off an obje
t everyhalf a se
onddon't see what happens in betweenaliasing is a problem without pre-�lteringhow 
an we 
ope without pre-�ltering?
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Astronomi
al dataapparent magnitude of a variable star
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Astronomi
al datawe 
an seedata are not uniformly spa
edthere is no way to ��x� thisno obvious periodno pre-�lter has been applied to the samples
an we still look for periodi
ities in the data?
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Periodogram

for uniformly sampled data Xn, use the periodogram
PX(k) =

1
N
|FTX(k)|2 =

1
N

∣

∣

∣

∣

∣

N−1

∑
n=0

Xne
−i2πkn/N

∣

∣

∣

∣

∣

2

.

rewrite 
omplex exponential in terms of trig.fn.s

PX(k) =
1
N





(

N−1

∑
n=0

Xncos(2πkn/N)

)2

+

(

N−1

∑
n=0

Xnsin(2πkn/N)

)2


.

write in terms of frequen
y f = k/(Nts) and sampletimes Tn = nts

PX( f ) =
1
N





(

N−1

∑
n=0

Xncos(2π f Tn)

)2

+

(

N−1

∑
n=0

Xnsin(2π f Tn)

)2


.
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Lomb-S
argle Periodogram

for irregularly sampled data we use theLomb-S
argle periodogram
P(LS)

X ( f ) =
1
2

[

(

∑N−1
k=0 (X(Tk)− X̄)cos(2π f (Tk− τ))

)2

∑N−1
k=0 cos2(2π f (Tk− τ))

+

(

∑N−1
k=0 (X(Tk)− X̄)sin(2π f (Tk− τ))

)2

∑N−1
k=0 sin2(2π f (Tk− τ))

]

,

where X̄ is the mean value of Xn and τ satis�es

tan(4π f τ) =
∑N−1

k=0 sin(4π f Tk)

∑N−1
k=0 cos(4π f Tk)

.
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Lomb-S
argle Periodogram explained

think of a periodogram as �tting sine and 
osinefun
tions to the datastandard periodogram does a least-squares �tassuming uniform samplesLomb-S
argle Periodogram does the samebut allowing arbitrary sampling
τ allows a shift in time to make everythingtime-shift invariantFast O(N logN) variants exist (similar to FFT)
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Nyquist limits

For uniform sampling, we must obey Nyquist limitor we get aliasingFor non-uniform sampling, we don't need to follow thestandard (uniform sampling) Nyquist limitwe don't need to bandpass signal before sampling!
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Nyquist limits

Intuition:for low-frequen
y, jitter in sampling time, isequivalent to error, or similar order of magnitude insample value

error

jitter
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Nyquist limits

Intuition:for high-frequen
y, jitter in sampling time,introdu
es errors of similar magnitude to signal

In some sense, there is some �ltering going on here.
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Lomb-S
argle Periodogram examples

variable star data from before
0 5 10 15 20
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50

frequency (cycles per day)

po
w

er

Average measurement interval = 10.427days.Nyquist frequen
y ≃ 1/10-th 
y
le per day.Peak is at 11.7 
y
les per day.
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Folded PlotsSuperimposes a time series upon itself with respe
t to aspe
i�ed period.if period of fold is 
orre
t, then measurementswould line up

folded plot

0 1 phase

periodic signal
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Folded Plot example

variable star data from beforeperiod 11.7 
y
les per day
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2D irregular sampling: CGI jittering

CGI anti-aliasing by jittering pointsequivalent to irregular sampling in 1Dtypi
ally sample irregularly at higher resolutionthan neededthen low-pass (by averaging)don't use this for animations (only stills)
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2D possibilities: Hex grids

sample onto hexagonal gridpixels have nearly 
ir
ular shapebetter mat
h to physi
al systems
ld e.g. printer dotsdifferent symmetriesbetter behaved 
onne
tivityonly one 
ase
ld not edge + 
orners as for squaresImproved Angular Resolution. With more lateralneighbors, 
urves and edges 
an be followedmore easily and a

urately
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Hexagonal grids

we 
an get a hexagonal sampling grid bystart with a re
tangular gridrotate by 45 degreesstret
h so that adja
ent samples areequi-distant

re
tangular grid rotate stret
h verti
ally hexagonal grid

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.64/83



Hexagonal Fourier Transform

transforms above tell us how to take FTrotating an image

⇒ rotate FTstret
h image (in one dire
tion)
⇒ squeeze the FT in the same dire
tionin square grid distan
e between sampleshorizontal or verti
al distan
e is 1diagonal, distan
e is √

2Nyquist frequen
y is different for diagonalin hex grid distan
e between samplesis always oneNyquist frequen
y is same in six dire
tions
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Sparse signals and


ompressive sensing
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Generalization of L-S periodogram

The L-S periodogram is a spe
ial 
ase of a more generalset of results.
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Sparse des
riptions

we should now be familiar with the idea of a basissimple transforms 
hange basismostly we 
onsider orthogonal basesnon-redundant, i.e., ef�
ientbut perhaps we get something if we allowredundan
yWhy transform: sparse des
ription of data 
an beusefulthis is one reason why the FT 
an be usefultransform into a basis where the des
ription ofthe signal is sparseif the des
ription is sparse, then we 
an
ompress the signal
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Sparse des
ription example 1
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Sparse des
ription example 2
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Sparse des
ription example 3
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Sparse des
ription example 4

The following is a sine, plus a �spike�

To represent this in either Fourier or �delta� basisrequires all basis terms.but with both, we 
an represent it as

x(t) = sin(t)+δ(t − t0)
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Basis pursuit

There is no standard orthonormal basis that allowsus to represent a spike plus a sine wave.We are really pi
king and 
hoosing the �best bits�of two different bases.Allows us to �nd a sparse des
ription of our datamight allow analysis, 
ompression, ...So we go in pursuit of a basis
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Di
tionary
A di
tionary allows us to des
ribe wordswe want a di
tionary for our signalswe want a way to translate into the di
tionarywe want ways to provide translation betweendifferent languagesLets sti
k to linear 
ombinations, i.e. let us des
ribe oursignal by a linear 
ombination

x = ∑
i

αiφi

for some set of atoms φi from our di
tionary D .
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Sparse re
overy

How 
an we obtain su
h a representation?we 
an no longer rely on a simple transformthe Di
tionary 
ould be quite largesear
hes through it for a sparse representationwould take too longin fa
t, NP hard
orresponds to minimizing the l0 normi.e., we try to solve the optimization problem

minimize ∑
i:αi 6=0

1 such thatx = ∑
i

αiφi
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Norms revisitedThere are a group of norms on R
n 
alled the l p normsde�ned by

||x||p =

[

n

∑
i=1

|xi|p
]1/p

Simple examples are

l2: de�ned by ||x||2 =
[

∑n
i=1 |xi|2

]1/2related to the RMS value
l1: de�ned by ||x||1 = ∑n

i=1 |xi|related to the mean absolute value

l0: de�ned by ||x||0 = ∑n
i=1 I(xi 6= 0) = ∑i:xi 6=01just 
ounts the number of non-zero terms of x
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Sparse re
overy via l1 norm

The problem above 
onsists of

minimize ||x||0 such thatx = ∑
i

αiφi

However, various papers have shown that for very many
ases, one gets a good approximate solution to the aboveoptimization problem by solving
minimize ||x||1 such thatx = ∑

i

αiφi
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Minimization of the l1 normWe 
an rewrite

minimize ||x||1 such thatx(k) = ∑
i

αiφi(k)

as

minimize ∑
i

εi

such that
x(k) = ∑

i

αiφi(k)

−εi ≤ αi ≤ εiThis is just a linear program, and 
an be solved bySimplex, or interior point methods for quite largeproblems.
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Example
Try to represent the following signal using Fourier andspike basis
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Example
Result of the l1 minimization
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Appli
ation

One possible appli
ation is anomaly dete
tion in traf�
datatraf�
 data shows periodi
itiesdaily (diurnal) 
y
les (people sleep)weekly 
y
les (people take the weekend off)anomalies (e.g. problems like DoS atta
ks) oftenappear as spikesif we separate the two, we 
an �nd the problems.
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Why does it work

Assume sparse representation existsthen it exists in one of a set of subspa
es that areparallel to axes of R
n

l0 minimization has to sear
h these
l2 looks for solution 
losest (using Eu
lideandistan
e) to a translated subspa
e (given by
onstraints).

l1 looks for solution 
losest (using 
he
ker distan
e)to a translated subspa
e (given by 
onstraints).
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Relation to L-S periodogram

L-S periodogram is impli
itly assuming that thesignal representation is sparse in the Fourier basisdo a �least-squares� �ttests ea
h basis fun
tion against the signalperhaps we 
an do better using l1 normMinimization?
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