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More Optimal Control
Examples

First we’ll cover a bit more terminology, and then some examples
primarily focussed on planned growth strategies in economics.
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Formulation of control problems

We break a control problem into two parts
◮ The system state: x(t) = (x1(t), . . . ,xn(t))t

The system state describes the system (e.g. position and velocity of
the car in car parking example)

◮ The control: u(t) = (u1(t), . . . ,um(t))t

We apply the control to the system (e.g. force applied to the car).
The evolution of the system is governed by the set of DEs

.
x(t) = g(t,x,u)

In a control problem we want to get the system to a particular statex(t1) at
time t1, given initial statex(t0).
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Optimal control problems

In anoptimal control problem we have still have the system equations.
x(t) = g(t,x,u) and we might wish to get to statex(t1) given initial state
x(t0), but now we wish to do so while minimizing a functional

F{x,u}=
∫ t1

t0
f (t,x,u)dt

That is, we wish to choose a functionu(t) which minimizes the functional
F{x,u}, while satisfying the end-point conditionsx(t0) = x0 and

x(t1) = x1, and the non-holonomic constraints
.
x(t) = g(t,x,u).
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Optimal control problems

Optimization functional

F{x,u}=
∫ t1

t0
f (t,x,u)dt

Note that

◮ f (t,x,u) has no dependence on
.
u: this is typically because costs

depend on the control, not how we change the control, but there
might be counter-examples

◮ f (t,x,u) has no dependence on
.
x: this is common in control

problems, but not universal (we have seen at least one counter
example).
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Terminal costs

Sometimes in optimal control we don’t fix the end-pointx(t1), but rather
we assign a costφ(t1,x(t1)) to particular end-points.

So now we wish to choose a controlu(t) which minimizes the functional

F{x,u}= φ(t1,x(t1))+
∫ t1

t0
f (t,x,u)dt

while satisfying the single end-point conditionx(t0) = x0, and the

non-holonomic constraint
.
x(t) = g(t,x,u).

◮ φ(t1,x(t1)) is called theterminal cost.
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System Terminology

◮ linear: the state equations are a set of linear DEs.

◮ autonomous: time doesn’t appear explicitly in the state equations
(e.g. ing(x,u), or f (x,u)).
⊲ also called time-invariant

◮ terminal cost: the termφ(t1,x(t1)) is called the terminal cost.

◮ controllable: a solution to the control problem exists.

◮ stable: a stable equilibrium solution to the system DEs exists.
⊲ often we are interested in problems that are unstable, or we

wouldn’t really need a control
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Control Terminology

◮ control (driver or automatic)
⊲ planned (open loop)
⊲ feedback (closed loop) control depends on current state

◮ type of control
⊲ movement fromA to B
⊲ continuous operations (maintain equilibrium)

◮ type of cost functionalF
⊲ minimum time
⊲ minimum fuel
⊲ quadratic costs

◮ admissible controls
⊲ unbounded/bounded/bang-bang
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Cost functional examples

◮ minimum time: choose the fastest possible control

F{x,u}=
∫ t1

t0
dt

◮ minimum fuel: fuel is expended by the controller, and we wish to
minimize this

F{x,u}=
∫ t1

t0
|u(t)|dt

◮ quadratic costs:

F{x,u}=
∫ t1

t0
x2(t)+αu2(t)dt
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Boundary conditions

◮ End timet1: can be fixed or free

◮ End positionx(t1): can be fixed or free

In the cases with free boundary conditions, we introduce natural, or
transversal boundary conditions.
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Example: dynamic production

◮ A producer in purely competitive market
⊲ A large numbers of independent producers
⊲ Standardized product, e.g. potatoes
⊲ Firms are ”price takers”, i.e. they have no significant control

over product price
⊲ Free entry and exit
⊲ Free flow of information

◮ wants to find optimal production pathx(t), 0≤ t ≤ T.

◮ production targetx(T) = xT

◮ profit at timet is π(x,.x, t)
◮ maximize profit functionalF{x}=

∫ T
0 π(x,.x, t)dt
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Example: dynamic production

Profit calculation

◮ quadratic production costsC1 = a1x2+b1x+c1

⊲ labor
⊲ raw materials

◮ production increase costsC2 = a2
.
x

2
+b2

.
x+c2

⊲ new buildings
⊲ recruiting and training costs

◮ revenuer = px wherep is the constant price per unit
⊲ p= constdue to purely competitive market

◮ profit at timet is

π(x,.x, t) = px−C1(x)−C2(
.
x)
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Example: dynamic production

Problem formulation: maximize total profit

F{x}=
∫ T

0
px−C1(x)−C2(

.
x)dt

subject tox(0) = 0 andx(T) = xT .

◮ notice that the control, and rate of change of state are the same (i.e.,
u=

.
x) but we write it as above for simplicity

◮ autonomous problem

◮ the control is planned, and has quadratic costs

◮ admissible controls are unbounded
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Example: dynamic production

Euler-Lagrange equations

d
dt

∂π
∂.x −

∂π
∂x

= 0

−
d
dt

∂C2

∂.x − p+
∂C1

∂x
= 0

−
d
dt

[

2a2
.
x+b2

]

− p+2a1x+b1 = 0

−2a2
..
x − p+2a1x+b1 = 0

..
x −

a1

a2
x =

−p+b1

2a2

for a2 6= 0
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Example: dynamic production

Solution (fora1,a2 6= 0)

x(t) = Ae
√

a1
a2

t
+Be

−
√

a1
a2

t
+

b1− p
2a2

whereA andB are determined by the fixed end pointsx(0) = x0 and
x(T) = XT .

This gives the optimal production schedule.
◮ no dependence onc1 or c2 (these are constant costs and so shouldn’t

effect production strategy)

◮ no dependence onb2 because this is a linear cost in increasing
production, and so occurs regardless of how we increase overtime
(to get to the final production targetx(T) = XT).
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Example: dynamic production

What happens if we make the end pointx(T) free, i.e. we don’t have a
production target at timeT?

Then we get a natural boundary condition

∂π
∂.x
∣

∣

∣

∣

t=T

=
∂C2

∂.x
∣

∣

∣

∣

t=T

= 2a2
.
x+b2

∣

∣

t=T
= 0

So, rearranging, we get
.
x(T) =−

b2

2a2

◮ constantsA andB are determined by end-point conditionsx(0) = x0

and
.
x(T) =− b2

2a2

Variational Methods & Optimal Control: lecture 22 – p.16/26



Example: dynamic production

◮ production costsC1 = x2+5x

◮ production increase costs

C2 = 2
.
x

2
+5

.
x

◮ p= 10

◮ T = 1

◮ x0 = 0, xT = 1
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x(T)=1
free end point
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Example: optimal economic growth

How much should be consumed, and how much invested for future
consumption?

◮ optimal theory of saving (Ramsey, 1928)

◮ Total capital at timet is K(t)

◮ Total population (labor force)L(t), which grows at exogenous rate

n, e.g.
.
L = nL

◮ Homogeneous quantity called GDP denotedY(t)

◮ GDP can either be consumedC(t) or invested to get
.
K(t), or used to

replace depreciated capitalµK(t).

Y(t) =C(t)+
.
K(t)+µK(t)
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Example: optimal economic growth

◮ GDPY(t) is a function of laborL(t), and capitalK(t)

◮ The production functionY(t) = f2(K,L) is homogeneous of degree
one, e.g.

Y(t) = L(t) f2(K/L,1) = L(t) f (K/L)

◮ Hence we normalize all quantities by populationL

y = Y/L GDP per capita

k = K/L Capital investment per capita

c = C/L Consumption per capita

and writey(t) = f (k) where f is assumed to be a strictly concave,
monotonically increasing function, with slope decreasingfrom ∞ at
0, to 0 at∞.
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Example: optimal economic growth

Consider the rate of per capita investment

.
k=

d
dt

(

K
L

)

=

.
K
L
−

(

K
.
L

L2

)

=

.
K
L
−n

K
L
=

.
K
L
−nk

using the fact that
.
L/L = n. Now we assumed that GDP could be

expended in one of three ways, leading to

Y =C+
.
K +µK

which we also divide byL to obtain

y= c+
.
k+(µ+n)k

which, when we substitutey= f (k) gives

c(t) = f (k)−
.
k− (µ+n)k(t)
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Example: optimal economic growth

◮ We want to maximize the totalutility

◮ Utility of per capita consumption isU(c). This would also be a
strictly concave, monotonically increasing function (according to
the law of diminishing marginal utility, i.e.U ′′(c)< 0<U ′(c)).

◮ Utility in the future is discounted by rater, e.g. is given byU(c)e−rt

◮ Our control is how much we consume (and hence what is left to

invest
.
k), and the state is the per capita investmentk(t).
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Example: optimal economic growth

We want to maximize the totalutility over time, e.g.

F{c}=
∫ T

0
U(c)e−rt dt

subject to

c(t) = f (k)−
.
k− (µ+n)k(t)

with k(0) = k0, andk(T) = kT .

Substitutec into the functional and we get

F{k}=
∫ T

0
U
(

f (k)−
.
k− (µ+n)k(t)

)

e−rt dt
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Example: optimal economic growth

The E-L equations are
d
dt

∂ψ

∂
.
k
−

∂ψ
∂k

= 0

whereψ(k,
.
k) =U

(

f (k)−
.
k− (µ+n)k(t)

)

e−rt , so

−
d
dt

e−rt dU
dc

−e−rt dU
dc

[

d f
dk

− (µ+n)

]

= 0

−e−rt d
dt

dU
dc

+e−rt dU
dc

[

r −
d f
dk

+(µ+n)

]

= 0

−e−rt d2U
dc2

dc
dt

+e−rt dU
dc

[

r −
d f
dk

+(µ+n)

]

= 0
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Example: optimal economic growth

We knowe−rt 6= 0, so we divide it out, and rearrange to get

dc
dt

=

[

r +µ+n−
d f
dk

]

U ′

U ′′

which together with

.
k= f (k)−c(t)− (µ+n)k(t)

determines the optimal solution of the system. Remember we are given

◮ U the utility

◮ f the per capita production as a function of capital
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Example: optimal economic growth

Example,U(c) = log(c), thenU ′ = 1/c andU ′′ =−1/c2, so

dc
dt

= αc whereα =−

[

r +µ+n−
d f
dk

]

so
c(t) = Aeαt

To solve fork, take linear production model, e.g.y= βk, and then
.
k= γk(t)−c(t) whereγ = (β−µ−n)

So
k(t) = Beγt +

c(t)
γ−α

= Beγt +
c(t)

r

with A andB determined byk(0) = k0, andk(T) = kT .
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Example: optimal economic growth

To maintain constant consumptionc(t) we require
.
c= 0, and so we must

have
d f
dk

= r +µ+n

To maintain constant investment, we require

.
k= f (k)−c(t)− (µ+n)k(t) = 0

which together determine a solution(c∗,k∗), where the system is in
equilibrium.

For the exampley= βk

k=
r +µ+n

β
and c= (β−µ−n)k
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