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Abstract: The analytic solution to the M/G/1 queue has long been known. The most
common derivations give probability generating functions for the queue length. This
approach can have difficulties in the numerical accuracy of the probabilities of large
numbers of customers. In this paper the generating function solution to a modified
M/G/1 queue is used in conjunction with Little’s law to derive these probabilities.

1 Introduction

The solution to the stationary M/G/1 queue has long been known (Cooper, 1972).
Many approaches give the solution in generating function form. From this it is not
easy to obtain analytic probabilities for the number of customers in the system. These
are desirable for a number of reasons, numerical accuracy of calculations being one of
them. When modifications are made to the system, such as incorporating a warmup
time ,it may become impossible to obtain such probabilities by normal techniques. We
will use a modified M/G/1 queue to obtain explicit probabilities for the normal queue.
This paper is arranged as follows. In the next section the definitions of the systems
we will examine are presented along with the solutions which are derived elsewhere.
Following this we use these solutions along with Little’s law to derive the probabilities
in the M/G/1 queue.

2 Definitions

By the M/G/1 queue, we mean the single server system with a potentially infinite queue
to which arrivals come in a Poisson stream with rate λ and service times are indepen-
dent, identically distributed random variables with probability distribution function
A(·) and mean 1/µ. Customers who find the server unoccupied seize it immediately
and hold it for their service-time. Customers who find the server busy wait in the queue
until they receive service. The order of service, or the queue discipline is irrelevant so
long as it is noted that it is non-preemptive. In order to obtain the solution the queue
is observed immediately after services. PASTA (Wolff, 1989) and the fact that in equi-
librium arrivals to the queue see the same distribution that departures leave (Cooper,
1972) mean that the equilibrium distribution of the embedded process, is the same as
the equilibrium distribution for the system. The probability generating function for
the equilibrium behaviour of the system is then

g(z) = (1 − ρ)
a(z)(1 − z)

a(z) − z
,
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where ρ = λ
µ

and a(z) is the probability generating function for the number of arrivals
during one service time which is given by

a(z) =
∞
∑

i=0

aiz
i,

where ai is the probability of i arrivals during one service and a(z) is given in terms of
the Laplace-Stieltjes transform of A(·) by

a(z) = A∗(λ(1 − z)).

We will also use the solution to a M/G/1 queue which is modified as follows.
The arrivals are again Poisson with rate λ but the service-times are random variables
which may take one of two possible probability distribution functions A(·) or B(·). If
there are less than k+1 customers in the system immediately before a service the service
time takes distribution A(·) while if there are more than k customers in the system
immediately before the service begins the service-time takes distribution B(·). Using
a martingale technique devised by Baccelli and Makowski (1985,1989) the probability
generating function for this process in equilibrium is given in Roughan (1993) as

E
[

zX
]

=
1

m

[

b(z)(1 − z) + (b(z) − a(z))fk(z)

b(z) − z

]

,

where

a(z) = A∗(λ(1 − z)),

b(z) = B∗(λ(1 − z)),

m =
1 + (ρa − ρb)fk(1)

1 − ρb

,

fk(z) = v(I − Pk)
−1zt,

where z = (z, z2, . . . , zk) and

Pk =



















a1 a2 a3 · · · ak−1 ak

a0 a1 a2 · · · ak−2 ak−1

0 a0 a1 · · · ak−3 ak−2

...
0 0 0 · · · a0 a1



















and v = (e1 + pek) where

p =
(1 − a0e1(I − Pk)

−1ek)(1 − a0ek(I − Pk)
−1ek)

a0ek(I − Pk)−1ek

,

and ρa = λ/µa, ρb = λ/µb are the mean number of arrivals during a service with
distributions A(·) and B(·) respectively.
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3 Results

Little’s law (1961) states

L = λW,(1)

where L is the mean number of customers in the system, λ is the arrival rate to the
system and W is the mean time spent by a customer in the system. If we apply this
to the server alone we can see that L is the probability that there is a customer in the
system and W is the mean service time so

L = p{X 6= 0} = 1 −
1

m
,

W =
1 − pk

µa

+
pk

µb

.

where pk is the probability of more than k customers being in the system. Thus we get

L =
ρb + (ρa − ρb)fk(1)

1 + (ρa − ρb)fk(1)
,

λW = pk(ρb − ρa) + ρb.

Substituting in (1) we get an equation for pk

pk =

[

ρb + (ρa − ρb)fk(1)

1 + (ρa − ρb)fk(1)
− ρa

]

1

ρb − ρa

.

If we consider ρa to be a constant and pk to be a function of ρb we can use L’Hopitals
rule to take the limit as ρb → ρa to get

lim
ρb→ρa

pk(ρb) =
d

dρb

[

ρb + (ρa − ρb)fk(1)

1 + (ρa − ρb)fk(1)
− ρa

]

ρb=ρa

=

[

(1 − fk(1))(1 + (ρa − ρb)fk(1)) + fk(1)(ρb + (ρa − ρb)fk(1))

(1 + (ρa − ρb)fk(1))2

]

ρb=ρa

= 1 − fk(1) + ρafk(1).

4 Conclusion

This gives us the probability that there are more than k customers in the queue. This
works for all k > 1 and the case with k = 0 is trivial and so we have the required
result. This method could be extended to cover far more complex situations. It is not
intended to be the be all and end all of such problems. It is merely a demonstration
that generating functions do not necessarily obscure the probabilities involved in a
problem.
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