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Abstract. Remotely monitoring maritime vessels is crucial for policing
and for ensuring their safety along Australia’s extensive coastline. Detect-
ing unusual behaviour is vital for evaluating naval activity, responding to
illegal activities, and detecting ships in distress. AIS (Automatic Identi-
fication System) data provides a rich source for research in this domain;
however, it only provides a limited set of features and the data is noisy
and irregular. In this study, we augment sampled trajectory segments of
base AIS data with a suite of statistical features and label them with
behaviours in order to perform supervised learning. We evaluate these
features in classifying maritime vessel behaviour using three different
machine learning classifiers - Random Forests, K-Nearest Neighbour and
a Multilayer Perceptron. The latter performed best using a set of the
twenty most important statistical features, as determined by Gini Im-
purity. It returned a weighted-average F1 Score of 83.6%. These results
demonstrate that a classifier built from a manually labelled AIS dataset
can discriminate vessel behaviour using only simple statistical features
that are easy to generate and can be applied to a range of classifiers.
This finding lays the groundwork for future research aimed at identify-
ing anomalous behaviour in maritime traffic.
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1 Introduction

The ability to identify a vessel based on its behaviour and detect unusual be-
haviour is important for several reasons. With such a large coastline, Australia
depends heavily upon remote sensing to ensure the safety of vessels at sea. Also,
maritime policing has become increasingly important for Australia. Detecting
unusual behaviours is needed for evaluating military naval activity and for re-
sponding to activities such as illegal fishing, illegal immigration, goods trafficking
and piracy. Aside from detecting malicious behaviour, early alerting of search
and rescue authorities to unusual behaviour allows for a quicker response time,
saving vessels in distress and potentially human lives.

LIt is with deep sadness that we note that the lead author on this paper — James
Cormack — passed away during the final preparation of the paper. He is sorely missed
by his family, friends and colleagues.
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Fig.1: The maritime traffic in this study in and around Bass Strait (on the
Southern coast of Australia). The map shows the recorded vessel trajectories of
the top 8 most common vessel types for the period January 2021 to March 2023.
Each vessel type is represented by a different colour (SAR refers to search and
rescue craft).

The goal of this research is to use AIS maritime vessel data to classify the
behaviour of short, fixed-length segments of vessel tracks using simple summary
statistical features into one of four states of motion: Stopped, Straight, Turning
or Manoeuvring.

Automatic Identification System (AIS) shipping data contains important in-
formation about vessels but does not contain labels indicating their type of
motion, so we created a labelled dataset using a combination of automatic rule-
based and manual labelling using a custom-built labelling tool. After labelling,
we resample the segments to rebalance the distribution of segments with each
motion type. We augment the base AIS features (Latitude, Longitude, Course,
Speed, Timestamp) with over sixty statistical features. Using selected combi-
nations of these features, we train three classifiers using Multi-layer Perception
(MLP), Random Forest (RF) and k-Nearest Neighbour (k-NN). We use the Gini
Impurity from the RF to order the importance of our statistical features. We
evaluate the efficacy of the resulting classifier /feature combinations by looking
at F1 scores and generating confusion matrices to visualise the results on a per-
category basis.

The study found that summary statistics can accurately classify maritime
vessel motion in open water. The best results were achieved using an MLP
classifier with the top 20 (by Gini Impurity score) statistical features, obtaining
an average F1l-score of 83.6%. The precision /recall for the ‘Stopped’ motion type
reached as high as 95%.



In summary we make the following contributions:

— We present a study that covers open-water trajectories in Australian wa-
ters, detecting behaviour in randomly chosen segments, and showing that
behaviour classification of these segments is practical from AIS data.

— We present a mixed-mode method for labelling data with behaviours, par-
tially automated and partially manual, to demonstrate the creation of a
labelled dataset with reduced effort.

— We propose a large set of statistical scalar values as features to summarise
and represent a vessel’s motion and show which features are most useful for
behaviour classification.

This paper outlines a method of preparation, segmentation and labelling of
AIS for supervised learning. It applies a set of simple statistical features and
uses them to classify a vessel’s behaviour.

2 Background

The Automatic Identification System (AIS), originally a system to aid vessels in
collision avoidance, is now used as a rich source of data for numerous other mar-
itime navigational research activities such as anomaly detection, route planning,
trajectory prediction and vessel classification [15,16,22,23].

Numerous publicly available AIS datasets exist [1-4]; however, data quality
is often reduced by such factors as noise, errors and missing data [13,21-24].
To overcome these issues, data cleaning methods like deletion [25], interpolation
[8,17] and resampling [8] are often employed before using the data to train
models. In this study, we use deletion and resampling; however, choose not to
interpolate new data points due to their tendency to mask underlying patterns
of motion.

Many studies decompose long trajectories into segments for analysis. The
beginning and end point of a segment can be defined using known origin and
destination ports [9], known stopping locations [12,20] or anchoring/turning
points [26]. Some techniques attempt to produce homogeneous segments where
each segment exhibits a single behaviour, or characteristic [19]. For further read-
ing on more complicated segmentation techniques, please refer to [7]. All of these
techniques produce segments of variable length. We choose to use fixed size ran-
domly selected segments as they are simple to generate, allow us to generate
comparable statistics and mimic real-life data streams where the most recent
points, often containing mixed behaviours, are the most important.

In this study we use summary features, that is, scalar features that sum-
marise all track points over a segment rather than a vector of feature points.
Dominant direction of travel, maximum speed, number of stops per hour and
various ratios of speed and course are used in [18]. Max, min, median, mean, std
dev, skew, kurtosis, range, interquartile range and a series of quantiles are used
in [10]. Summary features are simple to generate and easy to apply to a range
of classifiers.



The most similar paper to ours [10] classifies 6 vessel types from AIS kine-
matic data using simple statistical features (max, min, median, standard devia-
tion, skew, kurtosis, range, quantiles) and an XGBoost classifier. We use a much
larger set of statistical features, but also we are focused on classifying behaviour,
not vessel type, and are using short segments to do so.

3 Data
3.1 Raw Data

This study makes use of a publicly available AIS data set of maritime traffic
provided by the Australian Maritime Safety Authority (AMSA). Files are pro-
vided as geospatial vector data files in the ESRI shapefile format and can be
downloaded from [6]. AMSA has modified the dataset prior to public release,
anonymising the vessel identification and restricting the update interval to a
minimum of 15 minutes. This interval restriction reduces the resolution of data
points and hides activity that occurs within this 15-minute window. This is a
limitation of the data; however, it also presents an opportunity to evaluate how
such a limited dataset can be utilised.

Also noteworthy is that the data interval is only approximately uniform,
making many naive signal processing approaches to the data inappropriate. In-
terpolation is often used on such sequences [8,17] to create uniformly sampled
sequences, however, we avoid that approach here to avoid introducing artifacts
that skew behaviour classification.

Latitude and Longitude use the WGS1984 coordinate system. We calculate
distances by calculating the great circle distance (arc) on an ellipsoid defined
by the WGS84 datum. Positional accuracy depends on the device reporting and
the environment but the stated horizontal accuracy is no worse than £10m.

We examine vessel traffic data between January 2021 and March 2023 in the
region between mainland Australia and Tasmania, commonly called the Bass
Strait, bounded by latitude -41.2 to 37.7 and longitude 143.6 to 149.3. This is a
region of interest because (i) it has a high volume of shipping (Melbourne is a
major Australian port, for instance), and (ii) the straight is a potentially chal-
lenging maritime environment notorious for treacherous weather, strong currents
and large waves.

3.2 Data Preparation

The AIS data is imported from multiple shapefiles and concatenated into a single
dataframe. We perform cleaning activities to remove incomplete records and ma-
nipulate the data into a format suitable for our analysis and classification task.
The data is transformed from a single data point per row to a time-ordered
sequence of data points per row for each unique vessel ID. Each row then repre-
sents a single vessel’s movement over the entire study period (vessel track). We
later sample from these rows to generate the segments of motion in this study.

We filter the raw dataset to include only the top eight most common ship
types: cargo ship, tanker, passenger ship, pleasure craft, fishing, sailing, tug,



and SAR (search and rescue). Vessel types that are sub-classes of these majority
types are grouped into the same generic vessel type, and all but the top eight
most common types are dropped from the data set.

From the AIS data source, we use latitude, longitude, course, speed, type
and timestamp (see Table 1). All other fields are discarded from the dataset. We
choose not to interpolate missing values; instead, we drop any vessel tracks that
contain N/A values.

Table 1: AIS fields used here.

Field Range Units
LATITUDE -180.0 - +180.0 Decimal degrees
LONGITUDE -90.0 - +90.0 Decimal degrees
COURSE 0 - 360 Decimal degrees
SPEED 0 - inf Knots
TIMESTAMP 0 - inf UTC timestamp
TYPE Tug, Cargo, Tanker, Passenger, Sailing,

Pleasure craft, Fishing or SAR (Search And Rescue)

3.3 Trajectory Segmentation

We generate short segments of vessel journeys by random sampling (with re-
placement). Each sequence consists of four consecutive track points. Four points
(equating to 45 to 90 minutes of activity) were chosen as the shortest reasonable
window for classification. Four data points before and after the sample were also
collected to provide context for the manual labelling activity. Each segment has,
therefore, a total size of 12 track points, but only the middle four are used in
our analysis.

We made no attempt to detect the logical boundary of the segments or en-
sure that the vessel’s motion remains homogeneous within the segment. Samples
may encapsulate more than one type of behaviour, and, as a consequence, some
mixed-mode segments appear too complex and were therefore discarded as in-
determinate during manual labelling.

Each data point is at least 15 minutes apart so four sampled track points
represent a minimum time window of 45 minutes. To ensure a relatively regular
interval between track points, any sampled segment with an average interval
greater than 30 minutes or a standard deviation greater than 10 minutes is
excluded. This removes a small number of segments with large irregularities in
the time between track points.

Once the vessel trajectory segments have been sampled, we generate a visual
image of each vessel’s movement overlaid onto a map as shown in Figure 2.
The map displays the four sampled track points of the segment and the four
surrounding track points on either side of the segment (12 total). Each segment’s
linearly interpolated path is plotted along with an arrow indicating the vessel’s
reported course and coloured to indicate its reported speed. These images are
used to aid the manual labelling process in 4.4.



4 Methodology

4.1 Feature Generation

We choose to generate statistical features with the goal of finding a set of features
that perform well in classifying the motion of the trajectory segments. These are
derived from the four middle points, ignoring the context data points surrounding
them.

Intermediate Features A set of intermediate vector features are created to
aid the creation of our final statistical features. These vector features are values
calculated point-by-point based on the points in the base AIS features, that is,
features with values that change for each data point of a vessel’s journey. They
have the same dimension as the source features, in this case, 12 points (4 main
+ 8 contextual).

We introduce the concept of Direction of Travel (DOT) and Velocity, which
are calculated from the interpolated straight line between track points in the
segment. Although Speed and Heading values are already reported in AIS data,
Velocity and DOT allow us to compare reported values with calculated ones.
Moreover, our features are interval averages whereas AIS metrics are point values
of the time of measurement.

The following are our intermediate features:

— Interval: Difference (in seconds) between the current Timestamp and the
previous Timestamp.
— DOT _Dist: Distance along the interpolated DOT line between the current
Lat/Lon track point and the previous Lat/Lon track point.
— Velocity: DOT _Dist divided by Interval.
— DOT _ Difference: Difference in the direction of travel (DOT) between the
current track point and the previous track point.
— Course_ Difference: Difference between the current reported course and
the previously reported course.
— DOT _Course_Differrence: Difference in the current direction of travel
(DOT) and the current Course.
— Vel Speed Diff: Difference between Speed and Velocity.
— DOT _ Accel: Difference of Velocity between the current track point and
the previous track point.
We also add a contextual feature called Dist2Coast, being the distance to the
nearest coastline, using a lookup table provided by NASA [5].

Statistical Summary Features Although AIS data may seem large, modern
machine-learning techniques require very, very large datasets. It is plausible that
we can alleviate this need by augmenting the data with features that are known
to help in classification. Towards determining this we created over 60 statistical
summary features, representing each trajectory segment. Some of the features
are discussed below to provide illustrative examples, though space prohibits a
complete listing.



We create both piece-wise and straight-line summary features. Piece-wise
takes each segment point into account, while straight-line features calculate sum-
maries between the first and last data point of a segment. As an example, the
feature Piecewise-Distance is the sum of all the distances between successive
track points, whereas the Straightline-Distance feature is the distance between
the first and the last track point of the segment. Both types of features are
useful, in particular, for comparison purposes. For example, differencing the two
features above gives a measure of the amount of curvature in the segment.

A selection of the summary features are shown below:

— Avg Interval: Average interval between all track points.

— Pcw_Std Course: Standard deviation of Course over all track points.

— Pcw Avg Accel: Average acceleration over all track points.

— Pcw:Max__Speed_Change: Maximum change in Speed over all track
points.

— Pcw_Avg Dist2Coast: Average distance to coast over all track points.

— Str Change In DOT: Difference in DOT between the first track point
and the last track point.

— Pcw_vs Str Speed Diff: Difference between the piecewise average speed
and the straightline average speed.

— Pcw__Avg Course_vs DOT: Difference between the piecewise average
course and the piecewise average DOT.

We min-max normalise the values of each feature so that they range between 0
and 1.
4.2 Labelling

Based on the type of motion the vessel is exhibiting, one of four labels is applied
to each trajectory segment:

Stopped Trajectory segments are labelled as Stopped if the vessel is not moving.
However, GPS noise and minor variations in position suggest that insisting on
0.0 knots is impractical. In many cases, even if the vessel is not actively moving,
there is still a small amount of movement due to currents, as shown in Figure
2-a. Following [12], we label a speed less than 0.5 knots as stopped. This includes
trajectories where the vessel is moving for some of the time but stationary for
at least half of the time.

Straight Trajectory segments are labelled as Straight if the vessel is travelling
on a constant trajectory. This can be a straight direction of travel (interpolated)
but can also be a curved trajectory, including small turns and gradual curves in
motion. There is an allowance for noisy trajectories and trajectories with varying
courses provided the vessel is overall travelling in a single general direction.

Turning Turns are a single and abrupt change in direction. Segments are la-
belled as Turning if the vessel changes from one constant trajectory to another.

Manoeuvring Trajectory segments are labelled as Manoeuvring if the vessel
is undergoing multiple changes in trajectory. This occurs when a vessel is nego-
tiating a port or avoiding other traffic but can also occur outside of ports, e.g.,
in fishing activities.
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Fig. 2: Examples of the four types of motion. a) Stopped trajectories include ves-
sels that are partially moving and also stopped vessels that are moving slightly
due to currents b) Straight trajectories can also include small turns and grad-
ual curves in motion ¢) Turns are a single and abrupt change in direction d)
Manoeuvring segments show multiple abrupt changes in direction.

4.3 Auto-Labelling

To reduce manual effort, we use automatic labelling to generate a large number
of labelled samples and decrease the pool of unlabelled samples requiring manual
labelling. The auto-labelling is deliberately conservative, i.e., it classifies cases
that definitely lie in one category, using an auto-labelling script based on a set
of prescribed rules of motion:

— Straight: Vessel is travelling within 5 degrees of a straight line (Course and
DOT)

— Stopped: Speed < 0.5 knots for first 2 data points or Speed < 0.5 knots for
the last two data points or Speed < 0.5 knots for all points.

— Manoeuvring or Turning segments are not automatically labelled.

The labelling rules are intentionally very tight, leaving a large margin on each
of the decision boundaries. Auto-labelling only classifies samples that are clearly



one category of motion, and the remainder were labelled “Unclassified” for the
moment. The goal is to label easily classified segments and leave the samples
that remain outside the margins for manual labelling.

4.4 Manual Labelling

Manual labelling was performed on the segment samples that remain outside the
margins for auto-labelling. A purpose-built graphical tool was used to present
each segment, and the label was applied by a person (a single person performed
all manual classification to improve consistency).

The human labeller identified the type of motion the vessel exhibited. A
vessel may exhibit multiple types of motion in a single segment sample, and
in these cases, the labeller was tasked to identify the most prominent motion.
However, if the type of motion is unclear, then the sample is left undefined and
excluded from our study. In rare cases, artifacts in the data lead to impossible
action, such as a ship travelling over land, and in these cases the segment was
marked as abnormal.

4.5 Training Sample Preparation

Many learning techniques, including deep learning, perform better when there is
an even distribution of class labels [14]. However, ships spend different propor-
tions of time exhibiting each behaviour category, so our samples were unevenly
distributed across the four segment motion types. We randomly undersample
the classes that have automatically generated samples (Stopped and Straight)
to have the same number as the largest manually labelled class (Turning). Man-
ually labelled samples are taken first with the automatically labelled examples
sampled afterwards to top up the number in each class to the required size. Sam-
ples in the Manoeuvring class are unchanged. Table 2 shows the final distribution
of classes after resampling.

Label Samples
Turning 1151
Stopped 1151
Straight 1151
Manoeuvring 746

Table 2: Distribution of class labels after resampling. Note that Manoeuvring is
underrepresented as these can only be labelled manually.

Data was randomly partitioned into train, test and validation sets in a
64/20/16 split to make the best use of the data for training.

4.6 Feature Selection

The Random Forest classifier provides an ordered list of feature importance
based on the Gini Index [11, p. 338]. We utilise this list to select the most
significant features as inputs for the neural network classifier. Additionally, we



choose a number of additional feature combinations as shown in Table 3. These
were aimed at providing a more exhaustive understanding of the value of these
features than the Gini Index alone.

Feature Name Description

All Features All scalar features

Top 5 Top 5 most important features from the RF Gini Index

Top 10 Top 10 most important features from the RF Gini Index

Top 15 Top 15 most important features from the RF Gini Index

Top 20 Top 20 most important features from the RF Gini Index

Top 25 Top 25 most important features from the RF Gini Index

Top 30 Top 30 most important features from the RF Gini Index

Basic Simple feature set derived from average/standard devia-
tion of SPEED, COURSE and DISTANCE

Distance Features derived only from Distance (5 features)

LatLon Features derived only from AIS Lat and Lon (24 features)

Speed-only Features derived only from AIS Speed

Speed-Course Features only derived from AIS Speed and Course

Speed-Vel-Course-DOT Features derived from Speed, Velocity, Course, DOT and
Distance

Comparison Features Features comparing Straightline vs Piecewise, Speed vs
interpolated Velocity and Course vs interpolated Heading

Table 3: Feature sets used as input to the classifiers.

4.7 Classifier

We train three types of classifiers: a simple multi-layer perception (MLP), a
Random Forest (RF) classifier, and a k-Nearest Neighbour (k-NN) classifier.
Our neural network is a simple feed-forward classifier consisting of only 3
layers. The first and second layers consist of nodes of size 140 and 300 using
the ReLU activation function. The last layer is a softmax to generate a final
classification output. The Batch Size hyper-parameter is varied to determine a
combination that performs well using the validation dataset. The training epoch
is set to 300 and we employ early stopping and 20% dropout for regularisation.
The Random Forest Classifier varies the number of estimators (4, 10, 50, 100,
250, 500, 1000) and max depth (1, 5, 10, 20, 40, 80, 150) and uses randomised
cross-validation search to find the best hyper-parameters. Finally, the k-Nearest
Neighbours Classifier varies the number of neighbours (1, 4, 8, 20, 50, 100, 150)
and also uses randomised cross-validation to find the best hyper-parameters.

4.8 Training

We train each of the three algorithms using the various subsets of feature. Due
to the stochastic nature of training, we opt to run each configuration multiple
times and calculate results as an average over five test runs.

The training history of the best-performing classifier (MLP), shown in Fig-
ure 3, indicates a typical learning curve. The classifier trains until the validation
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Fig. 3: Training history of the best-performing classifier - A MLP using the top
20 Gini features with a batch size of 32. Early stopping stops training at 43
epochs.

loss (green) stops improving, using early stopping to prevent overfitting. Both
the validation (red) and training (orange) accuracy approaches a limit confirming
that further training will not greatly improve performance.

4.9 Metrics

We choose to use a weighted-average F1-Score to measure the performance of the
classifiers. The Fl-score is the harmonic mean of precision and recall. F1-score
reaches its best value at 1 (perfect precision and recall) and worst at 0.

Precision - Recall

Fi=2- Precision + Recall

We use a normalised confusion matrix (Figure 4) to provide an understanding
of how class affects the results. In our confusion matrix, each cell contains three
values. The middle value represents the count of accurate predictions for a spe-
cific class. The top-left value shows the percentage of accurate predictions within
that column, offering insight into precision (T'P/(TP + F P)). The bottom-right
value displays the percentage of accurate predictions within that row, providing
information about recall (T P/(T P+ FN)). This enables us to visualise precision
and recall on a per-class basis.

5 Results

5.1 Features

All features were evaluated using the Gini Impurity score [11, p. 338] calculated
from the best random forest classifier. The Gini score indicates the order of



importance of each feature, and we used it to find the most important features
for our neural network. Table 4 shows the ten most important features.

Gini Importance Description
0.0792 Distance travelled - distance between first and last track points
0.0580 The average distance travelled between segments
0.0562 The total distance travelled over all segments
0.0480 The average change in direction over all segments
0.0439 The cumulative change in direction over all segments
0.0364 The average velocity over all segments
0.0348 The number of stops velocity < 0.5knots
0.0336 The standard deviation of the direction of travel over all segments
0.0326 The average velocity between the first track point and the last
0.0325 The standard deviation of the course over all segments

Table 4: Top 10 most important features as ordered by the Gini impurity. De-
tailed description of these features can be found in the technical paper (ref
redacted for review).

The most important feature captures the difference in distances between the
sum of the linear interpolated distances between each point in the segment and
the straight line ‘as the crow flies” distance between the first point and the last
point. This intuitively captures the curvature of the trajectory, which explains
why it is considered the most important.

The second and third most important features are the average and total dis-
tance travelled between segments, both indications of the speed of the vessel.
The fourth and fifth most important features measure the amount of direction
change (in either direction), indicating how much turning is occurring. The sev-
enth is a count of the number of stops, which indicates how often the vessel is
stationary. It can be seen that all features add a different statistical perspective
on the vessel’s motion, aiding in the differentiation of the four motion types.

5.2 Evaluation

The MLP performed slightly better than the RF and much better than the k-
NN classifier. The best-performing classifier was an MLP using the top 20 Gini
features with a batch size of 32, which early stopped at 43 epochs (Table 5). It
returned a weighted-average F1-Score of 83.6%. The best RF classifier achieved
an average F1 score of 82.9%, and the best-performing K-NN classifier returned
a weighted average F1 score of 80.4%.

Examining the confusion matrix in Figure 4 shows that the MLP performs
well in classifying stopped vessels. 95% of stopped vessels are correctly predicted,
and 94% of the predicted stopped vessels are actually stopped. Straight and
Turning vessels are classified reasonably well; however, Manoeuvring vessels are
not classified as well as the other types of motion. Random Forest and K-NN
classifiers offer similarly distributed but slightly worse results.



Type Feature Set F1-Score

1st MLP TOP 20 (batch size 32) 83.6%
2nd MLP TOP 15 83.6%
3rd MLP TOP 20 (batch size 128) 83.5%
Best RF All Features 82.9%
Best K-NN TOP 10 80.4%

Table 5: Classifier Results showing the top 3 best-performing classifiers and the
best-performing Random Forest and k-Nearest Neighbour classifiers.
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Fig. 4: Confusion matrix for the best-performing classifier (MLP). Centre values
are a count of categorised instances. The top left value in each cell displays the
percentage of instances normalised along the vertical predicted value axis, and
the value in the bottom right cell displays the percentage of instances normalised
along the horizontal true value axis.

6 Conclusion

In this work, we classify the motion of maritime vessels in short segments from
AIS data. We avoid the common rule-based and unsupervised techniques and
attempt to capture the more subtle human interpretation of each vessel’s motion
by manually labelling the AIS dataset. The results show that simple summary
statistics can be used as features to classify the type of motion of a maritime
vessel. The best results were obtained with an MLP classifier using the top 20
most important statistical features, returning an Fl-score averaging 83.6%. The
confusion matrix indicates how well each of the motion types are independently



classified. For some motion types (Stopped), the precision/recall is as high as
95%.

Future research should focus on enhancing the quality of the data and/or the
classifier. It would be beneficial to conduct further studies using a higher-quality,
larger, evenly distributed dataset with smaller intervals between data points. To
improve the results, it could be useful to train multiple classifiers, such as one for
each ship type or motion type, and then combine them using ensemble methods.
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