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ABSTRACT
A recent paper [8] presented methods for several steps along
the road to synthesis of realistic traffic matrices. Such syn-
thesis is needed because traffic matrices are a crucial input
for testing many new networking algorithms, but traffic ma-
trices themselves are generally kept secret by providers. Fur-
thermore, even given traffic matrices from a real network, it
is difficult to realistically adjust these to generate a range of
scenarios (for instance for different network sizes). This note
is concerned with the first step presented in [8]: generation
of a matrix with similar statistics to that of a real traffic
matrix. The method applied in [8] is based on fitting a large
number of distributions, and finding that the log-normal dis-
tribution appears to fit most consistently. Best fits (without
some intuitive explanation for the fit) are fraught with prob-
lems. How general are the results? How do the distribution
parameters relate? This note presents a simpler approach
based on a gravity model. Its simplicity provides us with a
better understanding of the origins of the results of [8], and
this insight is useful, particularly because it allows one to
adapt the synthesis process to different scenarios in a more
intuitive manner. Additionally, [8] measures the quality of its
fit to the distribution’s body. This note shows that the tails
of the distributions are less heavy than the log-normal dis-
tribution (a counterintuitive result for Internet traffic), and
that the gravity model replicates these tails more accurately.

Categories and Subject Descriptors:
C.2.5 [Computer Communications]: Local and Wide Area
Networks — Internet; C.4 [Performance of Systems]: Model-
ing Techniques.
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1. INTRODUCTION
Internet Traffic Matrices (TMs), giving traffic volumes from

ingress to egress in a network, are the basic input to many
network engineering tasks. Much work has gone into mea-
surement [2] or inference [15, 13, 1, 7, 16, 17] of such matrices,
with a number of practical outcomes, for instance see [12].

However, as noted in a recent paper [8], there are some
cases where one wishes to be able to generate synthetic traf-
fic matrices. Synthesis gives one the control needed to gen-
erate many samples with precisely controlled parameters, in
order to undertake performance analysis of, for instance, a
new traffic engineering or network planning algorithm. It
is critical in such synthesis that the important properties of
real TMs are accurately represented in the synthetic TMs,
otherwise incorrect results may arise. However, the proper-
ties of TMs have not been extensively studied as yet, and it
is not currently known which are most important.

Thus there is little known on how to accurately synthesize
traffic matrices, though a number of simple approaches have
been used (for example see [3]). Nucci et al. [8] present steps
along the road to providing a method. Firstly, they suggest
the log-normal distribution to generate new TMs (based on
comparisons of the quality of several distribution fits). Sec-
ondly, the generated TMs are then related to synthetic or
real topologies to provide a complete problem (traffic and
topology). The synthetic TMs fit the properties of TMs
(considered in the paper), but obviously little can be said
(from these results) about how the matrices might fit unob-
served properties of traffic matrices. Furthermore, from such
a method, it is not particularly easy to see how one should
alter the parameters of the model given different underly-
ing structural assumptions about the problems of interest.
For instance, the data used in all current works on TMs was
derived from North America or Europe. What approaches
might be used in Asia or Australia where population demo-
graphics are rather different?

Such questions are hard to answer with complete gener-
ality, and certainly without more data than we at present
possess. However, this note presents a different approach for
the first step of synthesizing a TM. The method
1. provides some explanation for the results of [8], and

hence an understanding of how general these result are,
2. has only one parameter that need be measured and re-

quires generation of O(N) rather than O(N2) random
variables (for a network of N nodes), and so is simpler,

3. produces TM statistics with better fidelity than [8], in
particular in the tails of the TM distribution, and

4. is more easily generalizable than the log-normal approach.

The method is far from new. It is based on gravity models,
which have been extensively used in the social sciences, as
well as telecommunications, for instance in estimation tech-
niques for traffic matrices [16, 17]. However, in the con-
text of estimation of Internet TMs, gravity models have been
shown [16] to have accuracy limitations that might make one
think twice about using them for generating synthetic TMs.
This paper demonstrates that despite these limitations, the
gravity model is quite reasonable for synthesis of TMs.

The method proceeds by randomly generating the edge
flows of the gravity model, and then constructing the TM
from these flows. The random variables that make up the
TM are derived from the product of random variables, and
such a distribution is known to converge, in the limit, to a
log-normal distribution. Hence, it seems that this approach
provides some explanation of results reported in [8]. In ad-
dition, gravity models have the advantage that they can be
simply related to demographic data, allowing one to match
the model to the type of problems one wishes to work, re-
gardless of the context.



2. BACKGROUND AND RELATED WORK
An IP network can be abstractly thought of as a graph,

whose nodes are routers, and whose edges are links between
these. A Traffic Matrix (TM) describes the volumes of traf-
fic traversing a network from the point at which it enters the
network, to the exit point. Such a matrix is useful in capac-
ity planning, traffic engineering, network reliability analysis,
and many other network engineering tasks. It is possible to
measure such a matrix using measurement technologies such
as flow level traffic collection [2], but typically these are hard
to implement across a large network [16]. On the other hand
SNMP data is easy to collect, and almost ubiquitous. How-
ever, SNMP data only provides link load measurements, not
TM measurements [16]. The link measurements y are related
to the TM, which is written as a column vector x, by the re-
lationship y = Ax where A is called the routing matrix [15].
The resulting problem of inferring the TM from link measure-
ments is a classic underconstrained, linear-inverse problem.

There is extensive experience with ill-posed linear inverse
problems from fields as diverse as seismology, astronomy, and
medical imaging, all leading to the conclusion that some sort
of side information must be brought in. Examples of side in-
formation used in the context of Internet TMs are a Poisson
model [15, 13], a Gaussian model [1], a logit-choice model [7],
or a gravity model [16]. Each method of estimation is sen-
sitive to the accuracy of this side-information. The gravity
model assumption was tested in [16, 17], on a large set of
traffic data from a tier-1 Internet Service Provider (ISP) in
North America (AT&T), where, although it resulted in fast,
accurate and robust estimate of the TM, when used as a
starting point, it was not found to be accurate enough for
TM inference in itself. However these tests were aimed at
assessing the model for estimation algorithms, not for syn-
thesis, which is the focus of this paper.

Further effort on modeling the relationships between TM
elements has been performed in [6], and successfully exploited
for anomaly detection in [5]. These papers focused on Prin-
ciple Components Analysis (PCA) of the traffic matrices, as
times series. PCA exploits the correlations between TM ele-
ments to separate the periodic components of the traffic (see
[11]), from random fluctuations, and anomalous events. It
is not obvious how the structures described within [6] would
lead to a simple model for use in synthesis. On the other
hand, the gravity model is so simple that it has already been
used as a model for network traffic, e.g. see [3].

3. GRAVITY MODELS
Gravity models, taking their name from Newton’s law of

gravitation, are commonly used by social scientists to model
the movement of people, goods or information between geo-
graphic areas [14, 10, 9]. In Newton’s law of gravitation the
force is proportional to the product of the masses of the two
objects divided by the distance squared. Similarly, in gravity
models for interactions between cities, the relative strength
of the interaction might be modeled as proportional to the
product of the cities’ populations. A general formulation of a

gravity model is given by Xij =
Ri·Aj

fij
, where Xij is the ma-

trix element representing the force from i to j; Ri represents
the repulsive factors that are associated with leaving from i;
Aj represents the attractive factors that are associated with
going to j; and fij is a friction factor from i to j.

In network applications, gravity models have been used to
model the volume of telephone calls in a network [4]. In the
context of Internet TMs, we can naturally interpret Xij as
the traffic volume that enters the network at location i and

exits at location j, the repulsion factor Ri as the traffic vol-
ume entering the network at location i, and the attractivity
factor Aj as the traffic volume exiting at location j. The
friction matrix (fij) encodes the locality information specific
to different source-destination pairs, however, as locality is
not as large a factor in Internet traffic as in the transport of
physical goods, we shall assume a common constant for the
friction factors. The resulting gravity model simply states
that the traffic exchanged between locations is proportional
to the volumes entering and exiting at those locations.

Formally, denote the nodes by ni, i = 1, . . . , N , and the
volume of traffic T (ni, nj) that enters the network at node
ni and exits at node nj . Let T in(ni) and T out(nj) denote the
total traffic that enters the network via node ni, and exits
the network via node nj , respectively. The gravity model
can then be computed by either of

T (ni, nj) = T
T in(ni)P
k T in(nk)

T out(nj)P
k T out(nk)

= Tpin(ni)p
out(nj)

(1)
where T is the total traffic across the network, and pin(ni)
and pout(nj) denote the probabilities of traffic entering and
exiting the network at nodes i and j respectively. Under the
(reasonable) assumption that the network is neither a source
nor sink of traffic in itself, so all traffic crosses the network,
then T =

P
k T in(nk) =

P
k T out(nk) and we can also write

p(ni, nj) = pin(ni)p
out(nj) (2)

where p(ni, nj) is the probability that a packet (or byte) en-
ters the network at node ni and departs at node nj . Hence
the gravity model corresponds to an assumption of indepen-
dence between source and destination of the traffic. More
importantly, using the above, the gravity model can be writ-
ten as a matrix formed from the product of two vectors, e.g.

P = pinp
T
out (3)

so by characterizing these two vectors, we obtain a reasonable
characterization of the matrix.

In this paper, we use data derived from the Abilene re-
search network http://abilene.internet2.edu/ to exam-
ine the gravity model (the data from Abilene is publically
available, and therefore suitable for the type of comparison
we perform here, whereas data from most providers is pro-
prietary). Note that a gravity model estimates the Abilene
TM (from link data) badly: the average accuracy of the sim-
ple gravity model above is ±39%. As in previous tests of
estimation techniques [16, 17] these results can be consider-
ably improved by using a better initial gravity model (which
incorporates natural routing asymmetries), or by regulariza-
tion techniques. However, in this paper, the goal is not esti-
mation, but synthesis.

In fact synthesis turns out to be quite easy. We start by
taking T in(ni) and T out(ni) to be independent, identically-
distributed exponential random variables for i = 1, . . . , N .
The TM is then generated using (1). This method is ex-
tremely simple (an exponential distribution has only one pa-
rameter to estimate), and we need generate only 2N random
variables (as opposed to N2 in the log-normal approach).
Figure 1 shows the distribution for the gravity model de-
rived by simulating 1000 TMs (using the method above) and
then plotting the empirical Cumulative Distribution Func-
tions (CDFs), and Complementary Cumulative Distribution
Functions (CCDFs). Note that, although the initial fit to
an exponential distribution (not shown) is not perfect, the
accuracy of the final fit of the gravity model to the TM is
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Figure 1: A comparison between the log-normal, and the gravity model fits to the empirical Abilene data (a
single 5 minute PoP-PoP TM from 00:15 on the 1st of March, 2004).

excellent. Notice also that the components of the gravity
model are independent, where ideally they would be corre-
lated, but that this seems to have little impact on the quality
of the results.

4. COMPARISONS AND DISCUSSION
Figure 1 shows a comparison (for one five minute TM) be-

tween the CDF and CCDF for the Abilene traffic matrix,
and the log-normal and gravity-model TMs. Figure 1(a) and
(b) show that all three approaches produce the same distri-
bution with a reasonable degree of fidelity, over the body
of the distribution. Nucci et al. [8] use two tests to demon-
strate the accuracy of fit. The results here are consistent with
theirs, so we show only the Kolmogorov-Smirnov (K-S) test.
For Figure 1 the K-S statistic values for the log-normal, and
gravity-model approaches are 0.059 and 0.047 respectively,
consistent with the results of [8]. However, Figure 1(c), shows
a previously unnoted feature: the tails of the TM distribu-
tion are less heavy than the log-normal distribution1. The
gravity model replicates this tail with much better accuracy
than the log-normal fit. We shall provide a quantitative com-
parison of this feature of the distributions by comparing the
relative (absolute) errors in the 99th percentiles.

Figure 2 shows a comparison of the two metrics over a
week of Abilene data. As we saw before, the K-S statis-
tic values of the two methods are close (the means over the
week for the log-normal, and gravity-model approaches were
0.077 and 0.086 respectively). However, the errors in the
99th percentile were far larger for the log-normal approach
(mean 59% vs 10%). Interestingly, the results were similar
for aggregated data, e.g. hourly TMs.

There is an additional advantage to the approach proposed
here, in that the exponential fit to the data requires only one
parameter (the mean). The log-normal distribution requires
a mean and variance. In the more complicated schemes of [8]
the data is divided into small and large elements to be mod-
elled separately, and this introduces additional parameters
that need to be fitted, or adjusted for a particular scenarios
(to be modeled). It is certainly easier to adjust one parame-
ter, and so the gravity-model method is simpler to use than
the log-normal approach.

A final additional bonus of the gravity-model approach is
that it goes some way towards explaining the success of the
log-normal fit. Just as the normal distribution arises natu-
rally from the central limit theorem when we sum random

1Note that [8] used only the K-S, and Chi-squared tests for
distributions, neither of which is sensitive to tail behaviour.

variables, the log-normal distribution arises in the limit as we
take the product of random variables. Although the gravity
model involves only the product of two random variables, the
fact that these are simple exponentially distributed random
variables allows that the body (but not tail) of the result-
ing distribution is reasonably approximated by a log-normal
distribution. In addition to now seeing the log-normal fit as
approximating the gravity model, we can now also reduce the
number of parameters we need to estimate in the log-normal
distribution by using the gravity model to predict a rela-
tionship between the mean and variance of the log-normal
distribution. The gravity model (with exponential random
variables) results in the variance of the TM elements being
given by V ar[T (ni, nj)] = 3E[T (ni, nj)]

2. Note that the re-
sults reported in [8] fit this relationship with around a 20%
error for the two large/medium flow data sets2. The error
is much larger for the small flow data set. We do not have
access to the raw data from [8] here, however, one might see
the consistency in this relationship between the data from
the two different networks reported in [8], in conjunction
with the approximate log-normal behaviour of the gravity
model (which hence matches the distributions for the data
sets of [8]) as evidence that the gravity model is a reasonable
approach more widely than just for Abilene data. The small
flows may require separate handling (as in [8]), but given the
gravity model better matches the tails of the distribution, it
may also model these more accurately in a joint model.

5. CONCLUSION
This paper has presented a very simple gravity model for

simulating a TM similar to an Abilene TM data. Although
the simple gravity model provides poor accuracy for esti-
mation of traffic matrices, it appears to provide quite good
approach for synthesis, in particular: it is simple, requires
only one parameter, and fits the distributions of TMs well.

There is no question this approach can be improved. One
advantage of the gravity model is that there are many natural
ways of doing so. Future work will extend the validation
of this model, and derive more refined models (for instance
by including a distance related friction term). Further, [8]
presents methods for producing a time-series of TMs, and
matching these series to a network topology, problems not
considered here, though, the simplicity of the gravity model
is expected to be helpful in this regard as well.
2Errors are to be expected as these results are extrapolated
from the reported log-normal fit to the data (not the raw
data), and the tail of the log-normal distribution, to which
the variance is particularly susceptible, are incorrect.
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Figure 2: A comparison between the log-normal fit, and the gravity model over one week (March 1st-7th,
2004) of five minute data sets from Abilene. For both metrics smaller values are better.
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