Fundamental Bounds on the Accuracy of Network Performance Measurements.

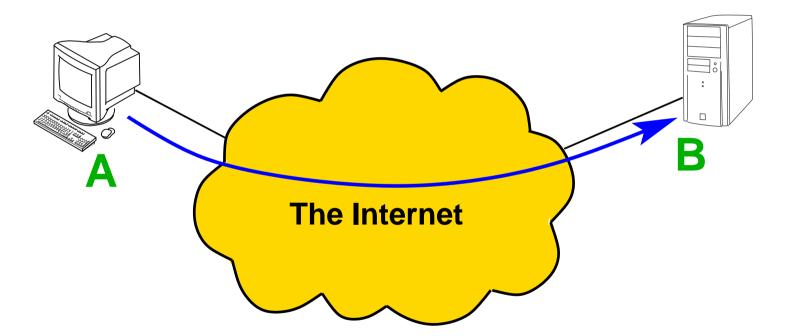
Matthew Roughan

<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

The problem

- Active performance measurements
- Send probe packets from $A \rightarrow B$ across the network
- e.g. measure the delays experienced by packets



- How many probe packets should we send?
 - really we need to be a little more specific

Motivation

Another way to state the problem is how accurate will a set of N measurements be?

- What do I mean by accurate?
 - not equipment accuracy!
 - assume perfect infrastructure
 - we mean statistical accuracy
- Can I achieve arbitrary accuracy?
 - naively you might say yes: take $N \rightarrow \infty$
- In reality there are fundamental bounds

Related problems

Applications

- network quality control
- anomaly detection
- streaming playout buffer size estimation
- load balancing & TE
- TCP RTO est.
- Vegas congestion meas.
- tomography (topology)
- location mapping

Measurements

- packet delay
- packet loss rate
- packet jitter
- packet reordering
- throughput

Statistical Accuracy

What do we mean by accuracy

- often individual measurements are inaccurate.
- implicit assumption of stationary ergodic process
 a time average converges to an ensemble average
- measurements over time can be averaged to give a better estimate of the mean delay
- variance can be directly quantified by the Central Limit Theorem
- assume Gaussian limit, quantify accuracy by confidence bounds for estimates.

Accuracy of estimates not individual measurements

Central Limit Theorem

Set of independent, identically distributed RVs X_i with sample mean $\frac{N}{1-\frac{N}{2}}$

$$\hat{X} = \frac{1}{N} \sum_{i=1}^{N} X_i,$$

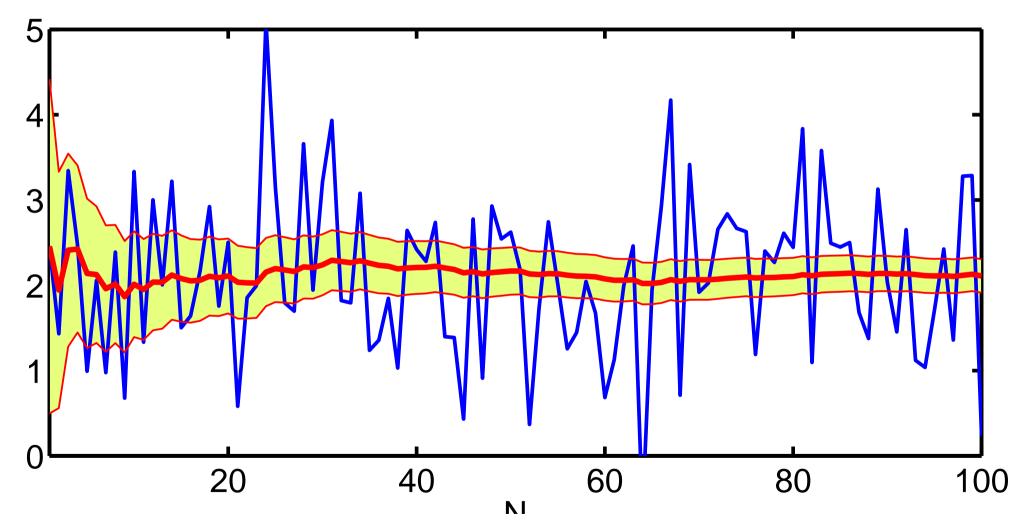
then $E\left[\hat{X}\right]=E\left[X_{0}\right]$, and

$$\sqrt{N}\left(\hat{X} - E\left[X_0\right]\right) \to N(0, \sigma^2)$$

in distribution as $N \to \infty$, where $\sigma^2 = \text{Var}[X_0]$

So the 95th% CIs of estimate \hat{X} are $\pm 1.96\sigma/\sqrt{N}$

Example



Time is short

- Stationarity is at best an approximation
 - \blacksquare approx. on short (e.g. < 1 min.) intervals
 - \blacksquare not true for long (e.g. > 24 hour) intervals
- We need to detect problems quickly
 - problems may be transient
 - diagnose problems within minutes to fix
- Some applications aren't around long enough
 - TCP RTT measurements
 - Streaming playout buffer needs to be determined at start of stream.

Constrained time interval

- constrained measurement interval
- perfect measurements (no artifacts)
- passive measurements

How accurate can we be?

- \blacksquare To increase N, measure more frequently.
- lacksquare Optimal is continuous measurements, $N \to \infty$.
- Does estimate variance go to zero?

Need a continuous-time version of the CLT

Central Limit Theorem: cont. time

Continuous time process X(t) where the sample mean

$$\hat{X} = \frac{1}{T} \int_0^T X(u) du$$

converges to the true mean $\hat{X} \to E[X]$, and

$$\sqrt{T}\left(\hat{X} - E\left[X\right]\right) \to N(0, s^2)$$

in distribution as $T \rightarrow \infty$, where

$$s^2 = 2\sigma^2 \int_0^\infty r(u) \, du$$

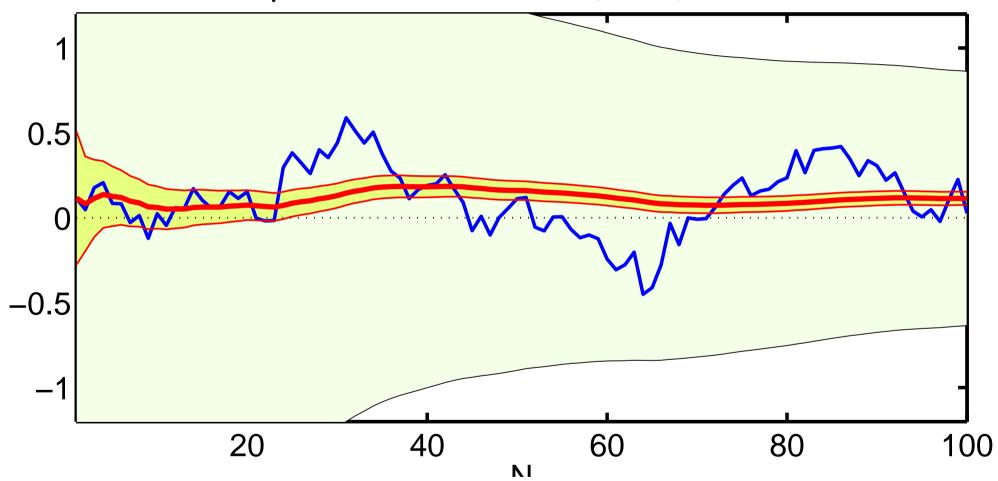
where $\sigma^2 = \text{Var}[X]$, and r(s) is the autocorrelation of X(t).

What does it mean

- closer samples are more correlated
- less information gained per sample
- There is a limit as $N \rightarrow \infty$
- Captured in the asymptotic variance s²
- Asymptotic results, but similar impact on short term measurements.
- \blacksquare Accuracy determined by T, σ and r(s).

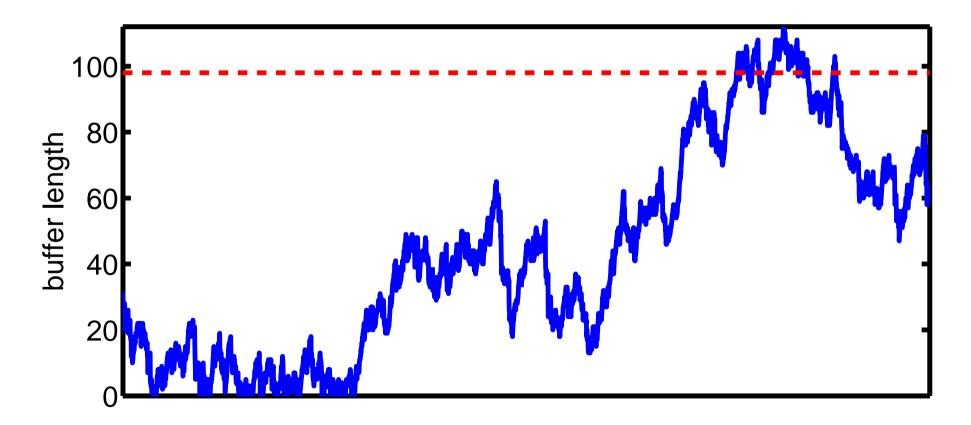
Impact of correlated measurements

EWMA: AR(1) process $Z_t = \alpha Z_{t-1} + (1 - \alpha)X_t$



How to apply here

- Perfect measurements (measurement error zero).
- variability comes from queueing delays
- are queueing delays correlated? YES!



M/M/1 queue

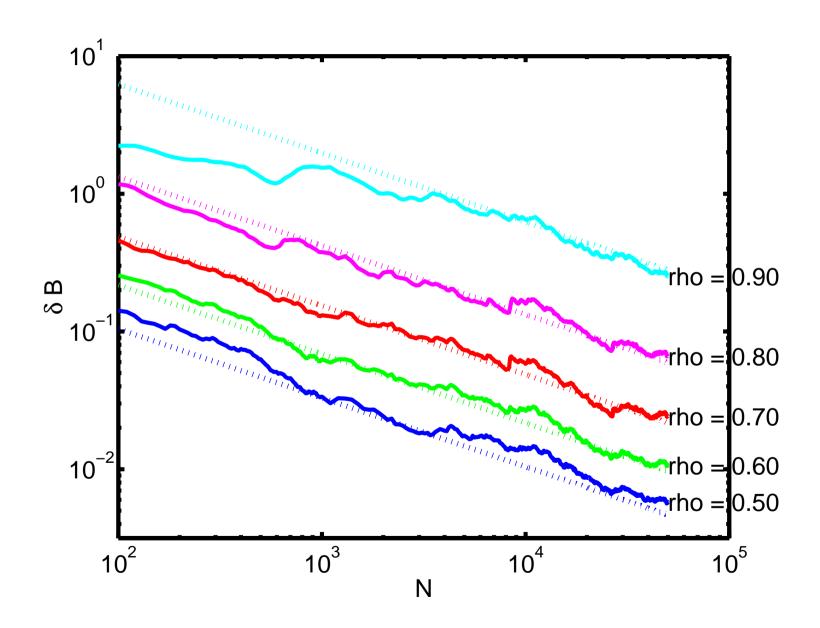
- Poisson packet arrivals (rate λ)
- **Exponential service times (mean** $1/\mu$)
- Average queue length

$$E\left[Q\right] = \frac{\rho^2}{1 - \rho}$$

asymptotic variance for M/M/1 (Whitt, 1989)

$$s^2 \simeq \frac{4\rho^2}{(1-\rho)^4}$$

- Correlations from excursions away from empty system
 - heavy-load ⇒ long busy periods
 - \blacksquare heavy-load \Rightarrow more correlation
 - \blacksquare s^2 is heavily load dependent



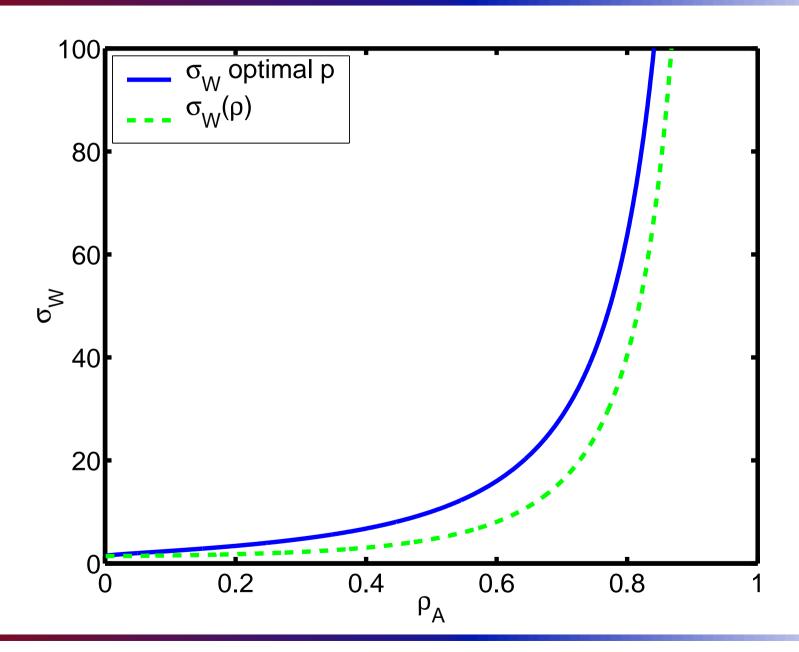
Implications

- 1. there is a fundamental bound on the accuracy with which we can estimate queueing delays,
 - it is dependent on the
 - length of the measurements interval
 - load on the queue

Active probing

- Everything until now has been passive
- Heisenberg effect
 - measurements impact the system
 - in turn this impacts the measurements.
- More rapid probing for more accuracy
 - increases queue load
 - increases correlations
 - reduces accuracy
 - can't be unravelled
- once again we can quantify
- we can compute optimal probe rate

Optimal Probing

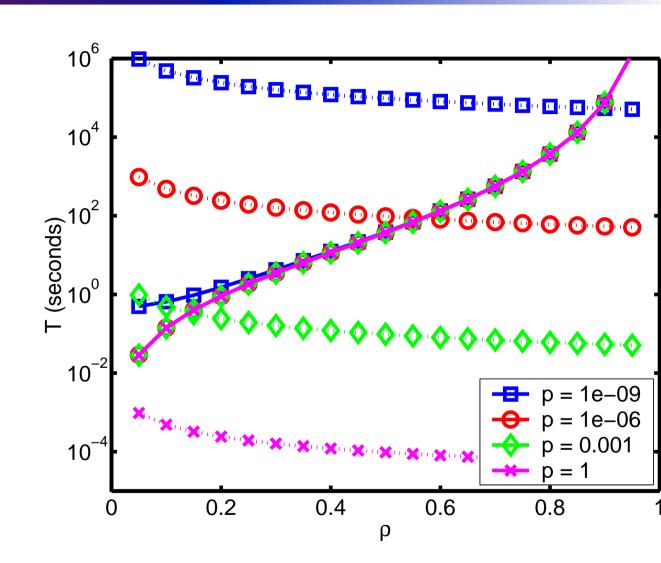


Implications

- 1. there is a fundamental bound on the accuracy with which we can estimate queueing delays,
 - it is dependent on the
 - length of the measurements interval
 - load on the queue
- 2. active probing increases the load
 - increases correlations
 - reduces the estimator accuracy.
- 3. you can't do better by probing more quickly
 - in fact you do worse
 - forms a bound like Heisenberg's uncertainty principle

The scale of the problem is big

- passive sampling
- M/D/1 queue
- OC48 (2.48 Gbps)
- 1500 byte packets
- p is proportion of arriving packets sampled
- ρ is normalized load
- desired accuracy
 ±1ms



Implications

- Faster measurements don't help much
 - Active probes should be fairly low rate
 - Passive delay measurement can sample
- TCP RTT measurements?
 - \blacksquare BSD only tried to get \pm 500 ms
 - TCP Reno encourages large buffers
 - bad for Vegas & TCP Fast, in competition?
- load sensitivity is very bad
 - adaptive routing
 - will see oscillation for certain parameters
- problems for detecting network problems
 - can't do it quickly

Mitigation

- it's all OK for lightly loaded network
 - current networks
 - hence success for many experiments
 - maybe we should keep them lightly loaded
- ECN might be good
 - limit queue excursions
 - might just force correlations to edge
- Look at less correlated data
 - differences, not averages
 - e.g. look at queue growth
- Look at traffic, not queues
 - measure arrival rate, not queue

Conclusion

There are fundamental bounds that can't be broached

- need to understand for Internet measurement
- also need to understand for other Internet systems

Unanswered

- how important are local measurements vs global
- maybe congestion control only needs transient info?
- what do applications really need to know?
- what does this look like with real data?
 - <matthew.roughan@adelaide.edu.au>

Extra Slides

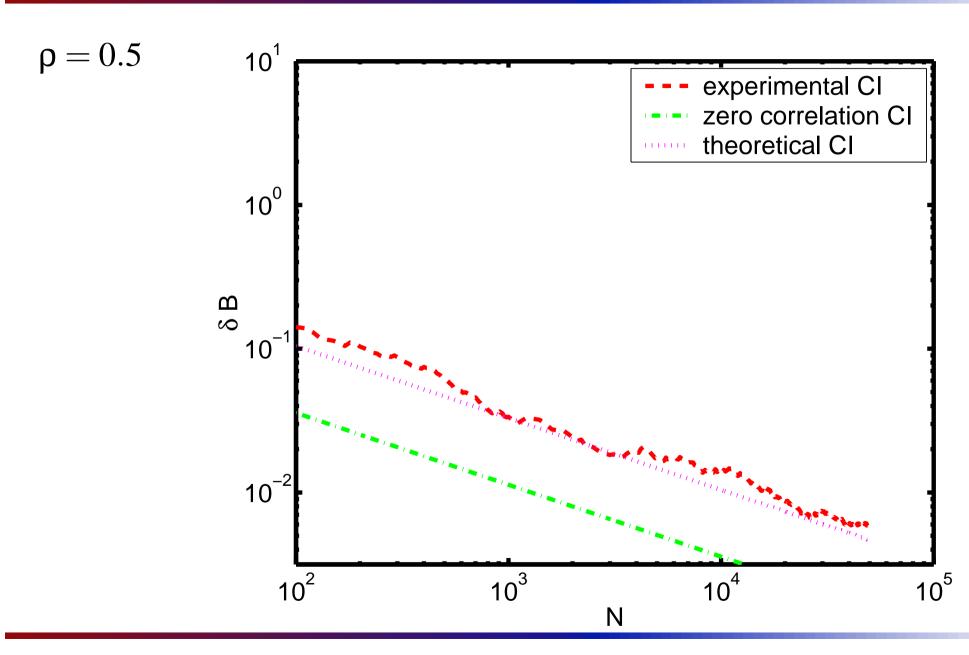
Discrete samples

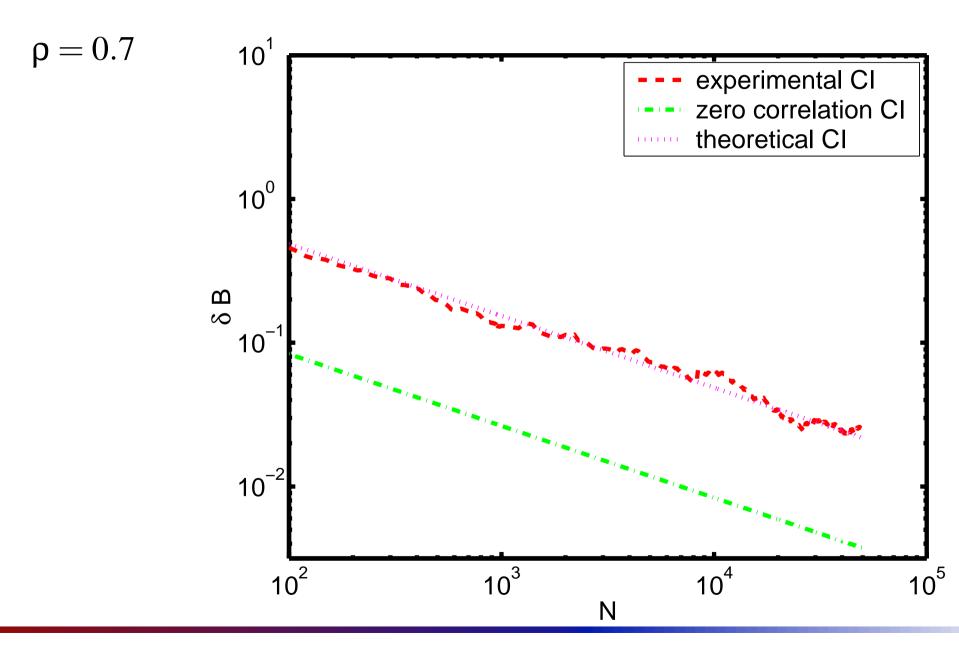
- Correlations are not only a continuous time problem
- Discrete (uniform) samples (interval δt)

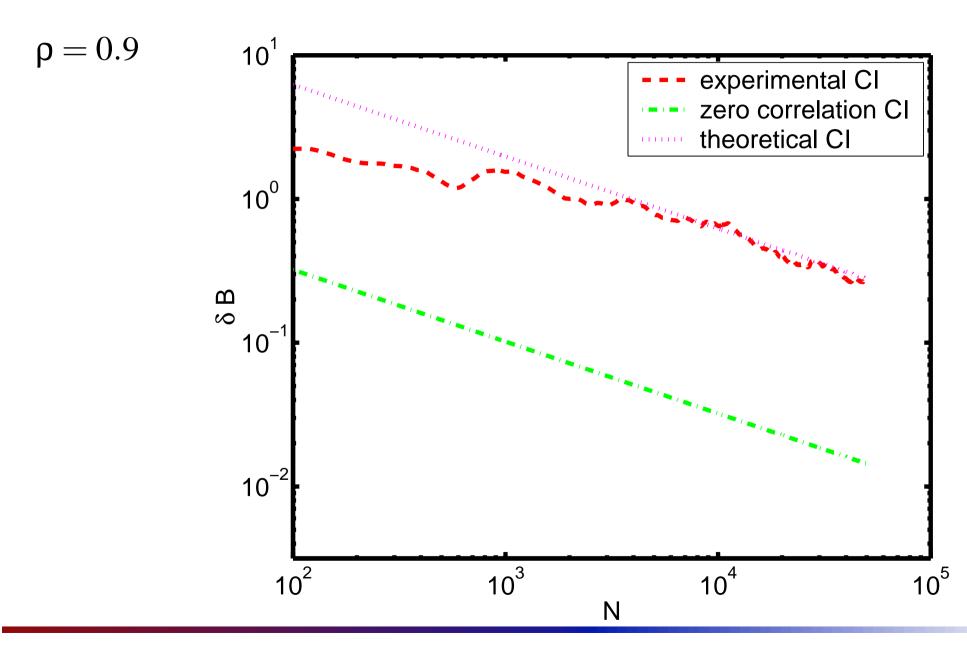
$$s^{2} = \sigma^{2} \left[1 + \sum_{i=1}^{\infty} r(k \, \delta t) \right]$$

Poisson samples (rate λ)

$$s^2 = \sigma^2 \left[\frac{1}{\lambda} + 2 \int_0^\infty r(u) \, du \right]$$







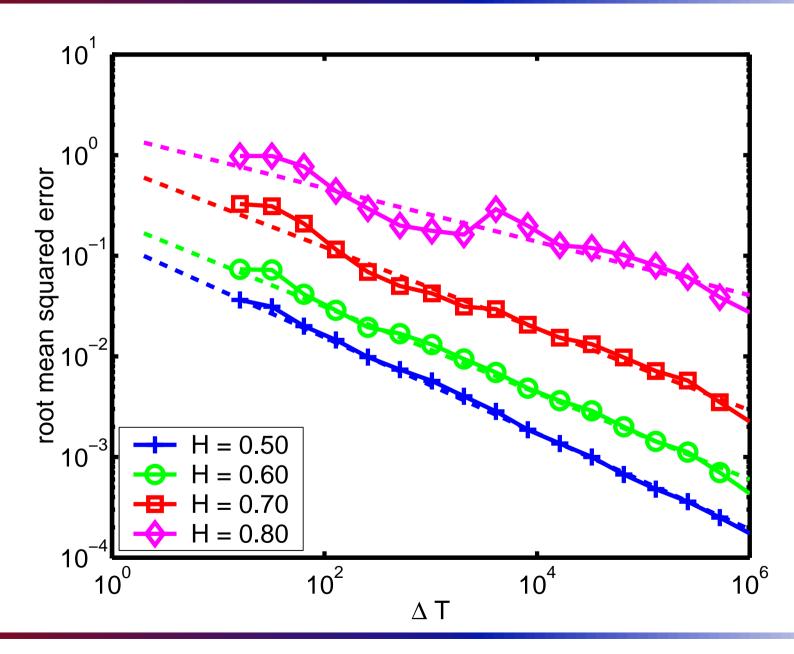
Generalizations

■ M/G/1 queue (Whitt 1989)

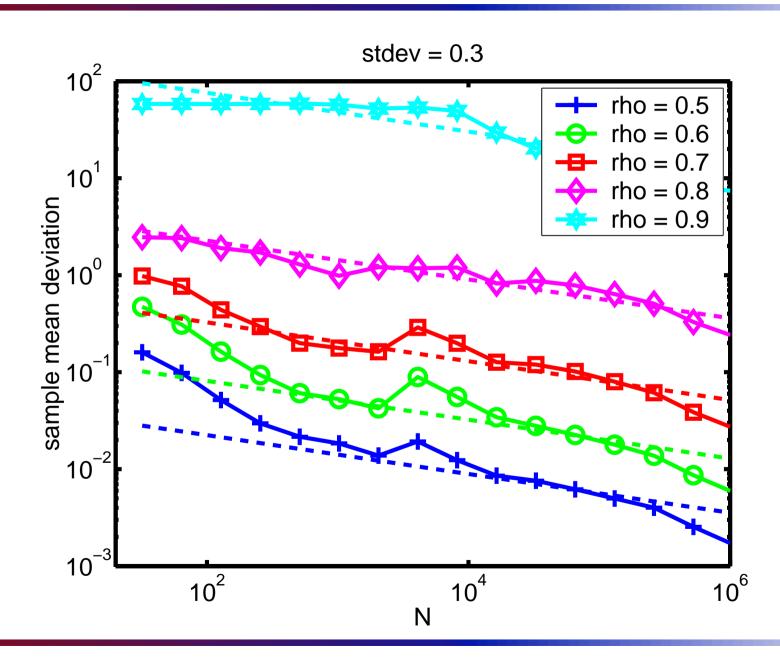
$$s^{2} \simeq \frac{\rho[1 - (1 - \rho)c_{s}^{2}](1 + c_{s}^{2})^{3}}{2(1 - \rho)^{4}}$$

- Networks: worst bottleneck
- RBM approximation (many queues)
- LRD traffic input to queues
 - generalized CLT
 - no known auto-correlations (asymptotic results only)
 - let's use simulation

Simulation for LRD queue



Simulation for LRD queue



Optimal Probing

