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The problem

m Active performance measurements
m Send probe packets from A — B across the network
m e.g. measure the delays experienced by packets

I

B

The Internet

m How many probe packets should we send?
= really we need to be a little more specific
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Motivation

Another way to state the problem is how accurate will a
set of N measurements be?

m What do I mean by accurate?

® not equipment accuracy!
assume perfect infrastructure

m we mean statistical accuracy

m Can I achieve arbitrary accuracy?
m naively you might say yes: take N — o

m In reality there are fundamental bounds
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Related problems

Applications Measurements
m network quality control m packet delay
m anomaly detection m packet loss rate
m streaming playout buffer m packet jitter

size estimation
m load balancing & TE

m TCP RTO est.
m Vegas congestion meas.

m packet reordering
m throughput

m tomography (topology)
m |ocation mapping
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Statistical Accuracy

What do we mean by accuracy
m often individual measurements are inaccurate.

m implicit assumption of stationary ergodic process
= a time average converges to an ensemble average

B measurements over time can be averaged to give a
better estimate of the mean delay

m variance can be directly quantified by the
Central Limit Theorem

m assume Gaussian limit, quantify accuracy by
confidence bounds for estimates.

Accuracy of estimates not individual measurements
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Central Limit Theorem

Set of independent, identically distributed RVs X

with sample mean 1 N

X== X,
Nizl

then E [X] = E [Xo], and

VN (X —E [Xo]) — N(0,0?)

in distribution as N — «, where g2 = Var [Xg|

So the 95th% CIs of estimate X are +1.960/v/N
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Example

White noise
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Time is short

m Stationarity is at best an approximation
m approx. on short (e.g. <1 min.) intervals
m not true for long (e.g. > 24 hour) intervals

m We need to detect problems quickly
m problems may be transient
= diagnose problems within minutes to fix

m Some applications arent around long enough

m TCP RTT measurements

m Streaming playout buffer needs to be
determined at start of stream.
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Constrained time interval

m constrained measurement interval
m perfect measurements (no artifacts)

B passive measurements

How accurate can we be?

m To increase N, measure more frequently.
m Optimal is continuous measurements, N — o,
m Does estimate variance go to zero?

Need a continuous-time version of the CLT
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Central Limit Theorem: cont. time

Continuous time process X (t) where the sample mean

X = 1/TX(u)du
T Jo
converges to the true mean X — E [X], and
VT (X —E[X]) — N(0,s?)
in distribution as T — o, where
s° = 20° /Ooo r(u)du

where 0% = Var[X], and r(s) is the autocorrelation of X(t).
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What does it mean

m closer samples are more correlated
m less information gained per sample

m There is a limit as N — o
m Captured in the asymptotic variance s?

m Asymptotic results, but similar impact on short
term measurements.

m Accuracy determined by T, o and r(s).
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Impact of correlated measurements

EWMA: AR(1) process Z; = aZ; 1+ (1 —a)X
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How to apply here

m Perfect measurements (measurement error zero).
m variability comes from queueing delays
m are queueing delays correlated? YES!
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M/M/1 queue

m Poisson packet arrivals (rate A)
m Exponential service times (mean 1/1)

m Average queue length

m asymptotic variance for M/M/1 (Whitt, 1989)
5% ~ 4p2
(1-p)*
m Correlations from excursions away from empty system
m heavy-load = long busy periods
® heavy-load = more correlation

msis heavilz load deEenden’r
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Results M/M/1
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Implications

1. there is a fundamental bound on the accuracy with
which we can estimate queueing delays,

m it is dependent on the
m length of the measurements interval
m |oad on the queue
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Active probing

m Everything until now has been passive
m Heisenberg effect

B measurements impact the system
® in turn this impacts the measurements.

m More rapid probing for more accuracy

m increases queue load

m increases correlations
m reduces accuracy

m can't be unravelled
m once again we can quantify

m we can compute optimal probe rate
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Optimal Probing
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Implications

1. there is a fundamental bound on the accuracy with
which we can estimate queueing delays,

m it is dependent on the
m length of the measurements interval
m |oad on the queue
2. active probing increases the load

B increases correlations
m reduces the estimator accuracy.

3. you can't do better by probing more quickly
m in fact you do worse

m forms a bound like Heisenberg's uncertainty
principle
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The scale of the problem is big

m passive sampling

m M/D/1 queue

m OC48 (2.48 Gbps)

m 1500 byte packets

m D is proportion of
arriving packets
sampled

m pis normalized load

m desired accuracy
+1ms

T (seconds)

-B- p =1e-09
-©- p =1e-06
p=0.001 |

| == p=1

0.8
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Implications

m Faster measurements don't help much
m Active probes should be fairly low rate
m Passive delay measurement can sample
m TCP RTT measurements?
m BSD only tried to get + 500 ms
m TCP Reno encourages large buffers
m bad for Vegas & TCP Fast, in competition?

m |oad sensitivity is very bad
= adaptive routing
m will see oscillation for certain parameters

m problems for detecting network problems

m can't do it quickly
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Mitigation

m it's all OK for lightly loaded network

m current networks
m hence success for many experiments

m maybe we should keep them lightly loaded

m ECN might be good

m |imit queue excursions

m might just force correlations to edge
m Look at less correlated data

m differences, not averages

m e.g. look at queue growth

m Look at traffic, not queues

® measure arrival rate, not queue
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Conclusion

There are fundamental bounds that can't be broached

m need to understand for Internet measurement
m also need to understand for other Internet systems

Unanswered
m how important are local measurements vs global

m maybe congestion control only needs transient info?
m what do applications really need to know?

m what does this look like with real data?
<matthew.roughan@adelaide.edu.au>
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Extra Slides
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Discrete samples

m Correlations are not only a continuous time problem
m Discrete (uniform) samples (interval ot)

(00)

=0% |1+ ) r(kdt)

=1

m Poisson samples (rate A)

%+2/Ooor(u)du]

2

s2 = g?
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Results M/M/1
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Results M/M/1
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Results M/M/1
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Generalizations
m M/G/1 queue (Whitt 1989)

> p[1—(1—-p)cg](1+cg)°
2(1—-p)*

§° ~
m Networks: worst bottleneck
m RBM approximation (many queues)

m LRD traffic input to queues
m generalized CLT

® ho known auto-correlations
(asymptotic results only)

m let's use simulation
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Simulation for LRD queue
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Simulation for LRD queue

stdev = 0.3

-4 rho = 0.5
-©- rho =0.6
1 -2~ rho=0.7

sample mean deviation
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Optimal Probing
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