
TCP Flow Controls

Matthew Roughan

Adelaide-Melbourne Grampians Workshop

1999

Copyright, 1996 © Dale Carnegie & Associates, Inc.

TCP/IP

Primary protocols used in the Internet
❚ IP (Internet Protocol)
❚ Transmission Control Protocol (TCP)
❚ TCP/IP refers to more than just TCP & IP

❙ TCP is where flow controls are introduced

Why Use Flow Controls?

❚ October1986 Internet had its first
congestion collapse

❚ Link LBL to UC Berkeley
❙ 400 yards, 3 hops, 32 Kbps
❙ throughput dropped to 40 bps
❙ factor of ~1000 drop!

❚ 1988, Van Jacobson proposed TCP flow
control

What are we interested in?

❚ Flow control is now mandatory on TCP
connections

❚ Much is known about the qualitative
performance of the Internet
❙ the Internet works!

❚ Little is known about the quantitative
performance of the TCP flow controls
❙ mostly by simulation, few analytic results

Outline

❚ TCP/IP and the Internet
❙ What is it?
❙ How does it work?

❚ TCP flow controls
❙ window flow controls
❙ TCP implementations

❚ State of the art in performance analysis
❙ lawp1

IETF

❚ Internet Engineering Task Force
❙ standards organisation for Internet
❙ publishes RFCs - Requests For Comment

❘ standards track
❘ experimental
❘ informational
❘ poetry/humour (RFC 1149: Standard for the

transmission of IP datagrams on avian carriers)

❙ TCP should obey RFC
❘ no means of enforcement

RFCs of note

❚ RFC 791: Internet Protocol
❚ RFC 793: Transmission Control Protocol
❚ RFC 1180: A TCP/IP Tutorial
❚ RFC 2581: TCP Congestion Control
❚ RFC 2525: Known TCP Implementation

Problems
❚ RFC 1323: TCP Extensions for High

Performance

Other Key references

❚ W. Stevens, “TCP/IP Illustrated”, Vol. 1-3
Addison-Wesley, 1994

❚ Vern Paxson, “Measurements and Analysis
of End-to-End Internet Dynamics”
PhD Thesis

❚ Van Jacobson, “Congestion Avoidance and
Control”
SIGCOMM’88

Internet Protocol (IP)

❚ packet switched
❚ unreliable (best effort)
❚ heterogeneous
❚ robust
❚ intelligence is in terminals, not in network

Aims of TCP

❚ TCP seeks to deliver a byte stream
❙ from end-to-end, in order, reliably
❙ allowing multiplexing
❙ use bandwidth efficiently

❚ TCP achieves reliability using ACKs
❚ Robustness Principle

be conservative in what you do,
be liberal in what you accept from others

TCP/IP Protocol Stack

Applications (e.g. Telnet, HTTP)

TCP UDP ICMP
ARPIP

Link Layer (e.g. Ethernet, ATM)

Physical Layer (e.g. Ethernet, SONET)

Packet Terminology

Application Message

TCP hdr

MSS
TCP segment

TCP data

IP dataIP hdr
IP Packet 20 bytes

Ethernet dataEthernet
Ethernet Frame 20 bytes

4 bytesMTU 1500 bytes14 bytes

IP Header Format

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Vers(4)

Flags

H len Type of Service Total Length (16 bits)

Fragment OffsetIdentification

Header Checksum
Protocol
(TCP=6)Time to Live

Source IP Address

Destination IP Address

Options Padding

IP data

TCP Header Format

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Source Port Destination Port

Sequence Number (32 bits)

Checksum

Options Padding

Acknowledgement Number (32 bits)

Urgent Pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Data
Offset Reserved Receive Window (16 bits)

TCP data

How TCP works
Connection

Client ServerSYN

Internet
ACK

SYN-ACK

SYN-ACK Handshake established route MTU

How TCP works
Reliable Data Transport

ACK
Data

ACK

Client ServerData

Internet

ACKs ensure reliability
with retransmission of unacknowledged data

TCP example client/server

ServerClient
struct sockaddr_in

servaddr;

s = socket(flags);

connect(s,
&servaddr,
sizeof(servaddr));

l = socket(flags);

bind(l, &servaddr,
sizeof(servaddr));

listen(l, LISTENQ);

for (; ;) {

c = accept(l,

&cliaddr,

&clilen);

}

servaddr is a structure which
contains the IP address and TCP
port number of the server

TCP versions

❚ TCP is not perfectly homogenous (200+)
4.2 BSD first widely available release of TCP/IP (1983)

4.3 BSD (1986) Windows 95

Windows NT
4.3 BSD Tahoe (1988)

4.3 BSD Reno (1990)
SunOS 4.1.3,4.1.4

NewReno (1999)
HP/UX

Solaris 2.3,2.4
Digital OSF

Linux 1.0

IRIX

?

Vegas

Window Flow Controls

❚ Limit the number of packets in the
network to be less than some window W

❚ offered load =

If W is too small then throughput « bandwidth
If W is too big then load > bandwidth

=> congestion occurs

RTT
MSSW ×

Effect of Congestion

❚ congestion causes packet loss
❚ results in retransmission
❚ reduces data throughput
❚ in extremes it can cause a collapse which

persists much longer than the original
overload

Congestion Control

❚ IP networks are heterogeneous
❙ bandwidth ranges from 1200 bps to 10 Gbps
❙ network delays range from < 1ms to ~ 1s

❚ TCP seeks to use BW
❙ with high utilisation
❙ without congestion

❚ Window Flow Control
❙ Must choose the window size W correctly

TCP Window Flow Controls

❚ TCP separates receiver congestion from
network congestion, and uses window flow
controls for each
❙ rwnd: receiver window
❙ cwnd: congestion window

❚ TCP must not send data with a higher
sequence number than the sum of the
highest acknowledged sequence number
and min(cwnd, rwnd)

TCP Receiver Flow Control

❚ prevent receiver from becoming overloaded
❚ receiver advertises a window rwnd with

each acknowledgement
❚ Window

❙ closed (by sender) when data is sent and ack’d
❙ opened (by receiver) when data is read

❚ The size of this window can be the
performance limit (e.g. on a LAN)
❙ sensible default ~16kB

TCP Congestion Control

❚ Has four parts
❙ Slow Start
❙ Congestion Avoidance
❙ Fast Recovery/Fast Retransmit

❚ ssthresh: slow start threshold determines
whether to use slow start or congestion
avoidance

❚ Assume packet losses are caused by
congestion

Slow Start

❚ Slow start is used if cwnd < ssthresh
❚ Slow start named because it starts with the

congestion window cwnd = 1
❚ On each successful ACK increase cwnd

cwnd ← cnwd + MSS
❚ The effect is exponential growth of cwnd

each RTT: cwnd ← 2 x cnwd

Congestion Avoidance

❚ Congestion Avoidance is used if
cwnd > ssthresh

❚ On each successful ACK increase cwnd
cwnd ← cwnd + MSS2/cwnd

❚ The effect is linear growth of cwnd
each RTT: cwnd ← cwnd + MSS

Packet Losses

❚ Packet losses may be detected by
❙ Retransmission timeouts (RTO timer)
❙ Duplicate Acknowledgements (at least 3)

4

Packets

1 2 3 5 6 7

Acknowledgements

31 2 3 3 3

Fast Recovery/Fast Retrans.

❚ When a packet loss is detected
ssthresh ← max(flightsize/2, 2xMSS)

❚ packet loss detected by a timeout go into
Slow Start (cwnd = 1)

❚ packet loss detected by Dup ACKs
❙ Fast Recovery/Fast Retransmission

cwnd ← cwnd/2

Implementation Dependence

❚ ssthresh initialisation (not standardised)
❙ Reno ssthreshinit = ∞
❙ Solaris ssthreshinit = 8
❙ Linux ssthreshinit = 1

❚ algorithm for incrementing cwnd in CA
❚ Tahoe went into slow start after Dup.ACKs

❙ no Fast Recovery (cwnd = 1)
❚ 1990 Reno had CA window increase

❙ ∆W = MSS2/cwnd + MSS/8
❚ Inspect route cache for history

Bugs

❚ BSDI incorrectly initialised cwnd to 230-214

❚ HP/UX doesn’t clear Dup.ACK counter on
timeout

❚ Linux 1.0 no FR/FR (more like Tahoe)
❚ Linux/Solaris retransmit behaviour was

broken
❙ retransmits every unACK’d packet

Bugs

❚ Windows 95
❙ often when 2 packets are sent one is lost

somewhere in the NIC, so that only 1 is sent.
The second is later sent by retransmission.

❚ Windows NT
❙ no fast retransmit

Timers

❚ An accurate RTT measure is required to
judge timeouts

❚ We can measure RTT by measuring the
time to receive a packets ACK

❚ Use a smoothed RTT, SRTT and the
smoothed mean deviation DRTT

RTO = SRTT + 4 DRTT

Implementation dependence

❚ The measurement of RTT
SRTT = SRTT + g (MRTT-SRTT)
DRTT = DRTT + h (|MRTT-SRTT| - DRTT)

❚ Need to minimize processing requirements
❙ Only 1 counter (regardless of how many

packets are extant)
❙ Counter granularity is typically 500 ms

❚ Measurement equations have gain par.s

Implementation Dependence

❚ Retransmission Timeout
RTO = β SRTT

❚ Initial RTO (should be > 3 s)
❚ measurement of RTT of retransmitted

packets
❙ from first transmission
❙ from final retransmission
❙ ignore RTT for retransmitted packets (Karn)

Timers on a packet loss

❚ If a timeout occurs, double the RTO and
retransmit the lost packet
❙ results in exponential back-off
❙ recalculate SRTT only when a packet gets

through

❚ RTT is lost if several packets are lost

Delayed Acknowledgements

❚ ACKs may be delayed to ‘piggy-back’ on
returning data packets (by no more than
500ms, typically 200ms)

❚ If multiple packets arrive near to each
other, a single ACK can be used to
acknowledge up to 2 packets

❚ Slow Start and Congestion Avoidance
increment cwnd per ACK, not per ACK’d
packet

Typical networks

Network Bandwidth Delay BWxdelay

10baseT Ethernet 10 Mbps 3 ms 3,750 B

T1 (satellite) 1.544 Mbps 500 ms 96,500 B

GB (transcontinental) 1 Gbps 60 ms 7,500,500 B

TCP Options

❚ Standard TCP performance is limited
❙ max window size (216-1 = 65,535 bytes)
❙ max sequence numbers (232-1 ≅ 4GB=32 Gb)

❚ Options for improved performance
❙ Window scaling (RFC 1323)
❙ Timestamps (RFC 1323)
❙ Selective ACKs (RFC 2018)
❙ larger initial window (RFC 2414, 2415, 2416)

Network management

❚ Explicit Congestion Notification (ECN)
❙ explicit notification of congestion (RFC 2481)

❚ Random Early Detection (RED)
❙ prevent burst of losses when buffers overflow
❙ randomly discard some packets (RFC 2309)

probability
of discard

FIFO Buffer

Performance Analysis

❚ Typical Assumptions
❙ Greedy sources

❘ source always has data to send

❙ Independent losses
❘ packets are lost with probability p, independently

❙ Examine equilibrium behaviour of bulk
transport

Rough Calculation





+
=+ -p ww

pw
w

nn

n
n 1y probabilitwith ,1

y probabilitwith ,2
1

()()
()
() p-pw

w-ppw
ww-pwpw

12
12

112

2 =
=

++=

p
w 2≈p«1

Padhye, Firoin, Towsley and Kurose
SIGCOMM'98Refinement

❚ Treat as a Renewal Reward Process Take into account
delayed ACKs

❚ Include timeouts as well as Dup.ACKs

❚ Include Receive window

bpRTT
MSSpB

2
3)(=

()2
0 321

2
33,1min

3
2

)(
ppbpTbpRTT

MSSpB
+










+

=








≅)(,min)(pB
RTT
MSSWpB r

Possible future work

❚ more realistic loss model
❚ finite sources (not greedy)
❚ investigation of interaction

❙ people have noticed synchronisation
❙ chaotic behaviour
❙ LRD arising from retransmissions

	TCP Flow Controls
	TCP/IP
	Why Use Flow Controls?
	What are we interested in?
	Outline
	IETF
	RFCs of note
	Other Key references
	Internet Protocol (IP)
	Aims of TCP
	TCP/IP Protocol Stack
	Packet Terminology
	IP Header Format
	TCP Header Format
	How TCP works
	How TCP works
	TCP example client/server
	TCP versions
	Window Flow Controls
	Effect of Congestion
	Congestion Control
	TCP Window Flow Controls
	TCP Receiver Flow Control
	TCP Congestion Control
	Slow Start
	Congestion Avoidance
	Packet Losses
	Fast Recovery/Fast Retrans.
	Implementation Dependence
	Bugs
	Bugs
	Timers
	Implementation dependence
	Implementation Dependence
	Timers on a packet loss
	Delayed Acknowledgements
	Typical networks
	TCP Options
	Network management
	Performance Analysis
	Rough Calculation
	Refinement
	Possible future work

