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Abstract

There are a group of problems in networking that can mostrai&tu
be described as optimization problems (network desigtfidrangineer-
ing, etc.). There has been a great deal of research devotsdving these
problems, but this research has been concentrated ondiotnain prob-
lems where one network operator has complete informatidrcantrol. An
emerging field is inter-domain engineering, for instancafit engineering
between large autonomous networks. Extending intra-domjgtimization
techniques to inter-domain problems is often impossibloeut the infor-
mation available within a domain, and providers are oftewillimg to share
such information.

This paper presents an alternative: we propose a methodaféic ten-
gineering that does not require sharing of important infaiion across do-
mains. The method extends the idea of genetic algorithmote symbiotic
evolution between two parties. Both parties may imprové fherformance
without revealing their data, other than what would be gadkerved in any
case. We show the method provides large reductions in nketvamgestion,
close to the optimal shortest path routing across a pair biorés. The
results are highly robust to measurement noise, the metheety flexible,
and it can be applied using existing routing.

*Corresponding author.



1 Introduction

Optimization is the natural approach to many problems invagking. For in-
stance: network design, traffic engineering, and routiegadroptimization prob-
lems. We typically seek the solution that minimizes someh@es abstract) cost
across the network in question.

However, there is no one authority which can perform such@muzation
for “the Internet”. The Internet is broken into many Autonaus Systems (ASes),
each of which is managed independently, and these indivalumnetworks are
often unwilling to co-operate. Hence, many problems in weking are treated as
game-theory problems with selfish participants, each ¢grygnoptimize for their
own benefit alone. However, it has long been known [1] thdistebehaviors can
result in poor outcomes.

However, network operators are not entirely "selfish”. Hwtance current
Internet routing relies on a certain amount of co-operatmansure smooth op-
eration — when networks don’t connect properly, the firshghoperators do is
talk to each other on the phone. Their apparent unwillingbt@gso-operate arises
frequently from an inability to share data that might revtesdle secrets, or violate
privacy legislation. Without shared information, it seewss cannot jointly opti-
mize more than one network, and so the participants areddma more selfish
model.

This paper describes an approach based in part on the idegasfyppreserving
distributed computation. Such computation can be usectiemethods for joint
optimization between networks, without the type of “riskyg-operation that most
previous methods of joint optimization require. We focusetmn the inter-domain
Traffic Engineering (TE) problem. In particular, our methsdimed at allowing
TE to proceed without the providers sharing informatiort thay consider pri-
vate. This prevents the partners in the optimization exipiginformation gained
about its competitors, prevents gaming of the situatiod, @ovides a basis for
trust.

We exploit two key ideas: firstly, we use an optimization hstioc based on the
metaphor of Darwinian evolution, commonly called a Gengéligorithm (GA).
GAs proceed by describing the optimization variables usirsgries of “genes”.
A population is created, allowed to compete, and the mostesstul are allowed
to reproduce. We call our approa@ATEway(Genetic Algorithm Traffic Engi-
neering). GAs are ideally suited to cases where the obge@tinction is hard to
compute, and we use this feature here by extending the nwtéplallow sym-
biosisbetween pairs of providers. In nature, symbiotic organigrimgly evolve,
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but they do not need to share genetic material to do so. Anaklg, GATEway
allows two providers to optimize their routing without simgrthe details of their
own networks (their genes). Despite this secrecy, we shatvah Rocketfuel
networks GATEway dramatically improves performance asmaned to existing
provider routing, and selfish routing procedures. In facgkTBway provides re-
sults within 5% of a reasonable lower-bound on the possibléopmance, and
about 40% better than the closest equivalent selfish rauting

As in biology, some information sharing is still requiredeavin the above
approach, primarily in the form of fithess functions. Thedga of each member
of the population must be evaluated (in biology this wouldrplicit in whether
individuals survive to breed). We then use techniques fioensecure distributed
computation community to substantially reduce even thidiswm of information
sharing. This allows the above optimization to be conduetigdout leaking any
direct information about the providers, for instance, tleynot need to share
topology, link capacity, internal traffic, or routing ddtai In fact, in the strictest
version of GATEway, the providers share almost no infororatat all, though
there is a penalty to be paid for such parsimony. Ironicalégpite sharing less
information, the communication cost increases.

In more detail, we compare five alternative techniques fafoping joint
TE between several networks. All are based on shortestypeitpht optimiza-
tion techniques because of their simplicity, ease of imgletation, and robust-
ness [13,15]. As benchmarks we compare routing where edalorkeoptimizes
its own routing selfishly, and routing where we treat the grotinetworks as a
single large network over which we perform a joint shorigstias optimization.
Against these, we compare three new algorithms:

e symbiotic: the simple symbiotic approach outlines above.
e symbiotic 2: the symbiotic without shared fitness function calculation.

e privacy-max: atechnique that exploits formal cryptographic technidaes
privacy-preservation to minimize the amount of leaked infation.

Table 1 summarizes the results, including the informatia heeds to be shared
by each algorithm. The notation is defined later, but in sumntae joint ap-
proach requires sharing of all data (network topologies, dapacities, and inter-
nal traffic matrices (we assume that the inter-domain traffatrices between a
pair of network operators are measured by each participahé selfish approach
does not require any sharing of data, but its performanc¥Dbn average) is
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poor compared to the joint approach. The first symbiotic rélgm requires that
we share only our choices of egress points for traffic, andggrcalculations over
a population of possible routing solutions. The resultiegfgrmance is 51.5%
— very close to the joint approach. The fitness calculationiezrelatively lit-
tle information, but if we are concerned about this leakdgmntwe can restrict
transmission of fithess functions, but as noted this redtleeperformance (to
68.4%). We also present an alternative method “privacy“madsich only needs
to share selection probabilities across populations. Meithod therefore reduces
information leakage, but this time the performance is good the cost is that
the communications cost increases\&s(whereN is the number of nodes in the
joint network).

Table 1: Comparison of approaches. Communications cost for theapyv
maximization approach are a worst case, with the likely dmshg significantly
smaller. Performance is given in terms of average maximuliratton relative to
the measured routing case (smaller percentages are better)

Approach Shared data Communications cost Performance
joint SP Gi, ci, wi, D O(N? + EK) 46.6%
symbiotic di, MaXcc B, Ue O(GP Npax log Q) 51.5%
symbiotic 2 | q;, O(GP Nypax log Q) 68.4%
privacy-max | sel.prob.9(x;) O(GPE?N?) 51.5%
selfish none zero 91.2%

Applying symbiosis to GAs represents a hew approach to sedistributed
computation. Previously, many of the algorithms appliedsecure distributed
computation have been based on Yao’s two-party protocolgiwban compute
any polynomial time function. We show here that we can findrapmate solu-
tions to NP-hard problems. The problem we consider hereite gpecific, but
there are many other fields where similar issues are enaaant®ur approach is
quite generic, and so may be applicable to other problentsihatetwork engi-
neering, and outside.

We further address some of the practical problems of usieh auprotocol.
We demonstrate the flexibility of the approach by using al&ve optimization
objectives and showing performance improvements incragsadicantly with the
number of networks using the method, and we also find that #taad is highly
insensitive to measurement noise. The symbiotic methadsaatually improves
computation times in comparison to the joint algorithm. Aideally, we demon-
strate that such an approach could be practically impleadanttoday’s networks.
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2 Background and Related work

2.1 Traffic Engineering

There are many tasks in network operations which fall unkderheading of op-
timization. In this paper we shall concentrate on Traffic iBegring (TE), the
process of balancing one’s traffic across the existing linksnetwork. One may
think of this as optimizing the routing parameters of a nekysuch that the re-
sulting routing is “beneficial” in some sense. The routingapaeters determine,
for each source-destination pair, the fraction of trafficngoon different paths
from the source to the destination. Many TE techniques haea lpresented (for
examples see [2-15]). The majority of the TE literature evns intra-domain
TE. That is, optimization of routing parameters within agsnnetwork. There
are many approaches to this problem, though the two mosalemvare given
below.
Explicit path where the traffic is arbitrarily routed to satisfy the reswt a multi-
commodity flow optimization [16, Chapter 17]. Explicit patbuting is generally
instantiated through MPLS (Multi-Protocol Label Switc)ror IP-in-IP encap-
sulation [17].
Shortest-pathwhere the routing uses shortest-paths, but the link weigtetsr-
bitrarily chosen as the result of some optimization. Ststypath routing is ap-
pealing because it can be implemented easily using todays commonly used
Interior Gateway Protocols (IGPs) In these protocols eshis associated with
a positive weight, and path length is defined as the sum of t#hghis of all the
links on that path. Traffic is routed along the shortest pathsases of ties the
flow is generally split (roughly evenly) across Multiple EdnCost Paths (MECP).

Explicit path optimization has less constraints, and tteeeemust achieve a
superior solution to the shortest-path optimization. MBivone supposes that
explicit path optimization will perform significantly bett However, there is now
substantial literature supporting shortest-path opttan. It has been shown
that (for realistic networks) one can get within a few petagrthe performance
of explicit path routing [6], even where the inputs contaiadiction or inference
errors [13,15]. What’s more shortest-path optimizatiomdaoose sets of weights
that perform well over a range of traffic (say the variatiomsrahe course of a
day) [9, 15] or under link failures [14, 18, 19].

Either technique is appropriate within a single network, loth have flaws
for inter-domain TE, a topic of recent interest [17, 20-28he Internet has a
broad two-level hierarchy in its routing, separating ird@main routing from



inter-domain routing. BGPv4 (the Border Gateway Proto@bkion 4) is the de
facto standard for inter-domain routing. When consideiimgr-domain rout-
ing, one must consider the interactions between IGP and EXSP3D]. Inter-

domain MPLS solutions could in theory avoid some of the protd of inter-

action, but there are still practical complexities in usM&LS in inter-domain
routing [26, 27]. Shortest-paths routing cannot be useaumse it might violate
BGP policies. For example, peering agreements typicalipit transit traffic

(i.e. traffic that use backbone B to transit between two gaantbackbone A), but
shortest-path routing allows transit.

There is another problem: traditional traffic engineeritgpathms require
complete topology and traffic information from all netwarldSPs are typically
unwilling to share information such as their topology, lio&pacities, internal
traffic volumes, and routing policies, particularly withtpotial competitors. As
noted in [27] optimization methods which do not have congietormation often
fall short in performance. Similarly [31] shows that if ISBs-operate in deter-
mining inter-domain routing they can achieve better penfonce. Can we still
attain this improved performance if the ISPs will not shawferimation? It is this
problem that we concentrate on heldow may we perform inter-domain traffic
engineering without sharing detailed topological and fi@information?This is
the major difference between our work and the majority oflitieeature on TE.

The primary problem we consider here is a connected pairfeé Mho wish
to optimize the routing of traffic on their joint network. We dot separate the
problem into separate intra- and inter-domain TE probldmtiegard the joint TE
problem. The most closely related works to our own are [3]L,Qfr results agree
completely with [31] in that ISPs may gain much larger besdfiom TE if they
cooperate. We attempt to go further in providing secrecytherparties. In [31]
the providers must reveal opaque preference classes peflit@se certainly hide
a great deal of the internal information of a network, but sfpen the network
to indirect inference about its properties if not very caligfimplemented. We
aim to show just how little information needs to be shared édgrm a joint
optimization, and the tradeoffs between sharing inforaraéind performance.

GATEway is pragmatic in the sense that we aim to solve thelpnoln a way
implementable using current routing protocols without ificdtion. The primary
constraint this applies to our work is that we use BGP forridt@main routing.
BGP provides quite good means to control outgoing trafficobly limited means
to control an ISP’s incoming traffic. However, if two netwaskerators jointly
control their outgoing traffic the effect is control in botinettions. In [31] this is
achieved through negotiation of the exit points. We shalbaim to control exit
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points for traffic, though the choices will only be negotétmplicitly. We will
refer to the type of routing solution we considermsned-exit routingbecause
the ISPspin the exit point of particular flows. However, we will use shest:
path routing within an ISP, and we will not allow path sharotger than across
MECPs.

Evolutionary algorithms have been applied in this contefobke [28], but that
paper is concerned with quite a different issue, namely doe that there can
be multiple objectives when performing inter-domain TEe faper searches for
non-dominated fronts in order to describe characteristigster-domain routing,
whereas we are looking for particular solutions to a singective optimization
problem.

2.2 Privacy Preserving Computation

The problem we consider comes under the headirggofire distributed compu-
tation, i.e. computing some function of several pieces of dataautlexplicitly
combining data (and thus revealing it). Another term usedktscribe this would
be privacy-preserving multiparty computatigwe use the terms synonymously).
The area of secure distributed computation has been heatliyenced by
Yao'’s two party protocol [33, 34], which is a protocol betwedw®/o peers that can
compute any polynomial-time function pdif.,(x,y), f,(x,y)), wherex andy
are the inputs andx(-) and fy (-) are the functions of interest to the two parties
X andY, respectively. The impressive thing about the protocoh& nheither
party learns the other’s input data, or their output, Meonly learnsfy, not fy
ory. The classic example of Yao’s protocol is the computatiothefminimum
of two values. The protocol requires two rounds of commuioceand has)(n)
computation and communication cost (where the numbersegresented im
bits). However, the protocol is not always efficient, and smyntechniques have
been developed to improve computational complexity andreamications costs
for specific problems. This area is now well developed — sBgff8 a listing of
a number of significant papers. Relatively little work hagrieone on privacy
preserving computation for Internet applications. Britked Shmatikov [36]
provide an algorithm to solve the shortest-paths throughiagh connected net-
works, and Machiraju and Katz [32] consider the flow maxirtiaaproblem for
a pair of networks. Note though that these both have polyabtinie algorithms
for the non-distributed problem. Yao’s two party protoaoid related approaches
provide methods for computing polynomial time functionsheTproblems here
are NP hard.



Also importantly, note that in some problems, even thoughlgarithm leaks
no side-informationX or Y might still derive information about the inputs from
the output alone. A good example is the shortest-path pmublie privacy-
preserving algorithm for shortest paths on a pair of coretenetworks is strictly
privacy preserving [36]. However, knowledge of the outmhigftest-paths) is suf-
ficient to derive information about the weights of the joimtwork [37]. There
is an important distinction between ensuring that the cdatmn is private as
opposed to the results being something that the two panteesviling for their
partner to know.

On the other hand some of the input data may be easily obderkglboth
parties in any case. For instance, in the shortest-path @eamwhen the routing
is implemented we could simply measure it. Hence leakaghisfinformation
is inconsequential. Given these two features, we do notesonaurselves with
strict privacy-preservation here. Instead, we seek tomiae the leakage (by the
algorithm or solutions) of information that could not be enise observed by
the participants. It is no longer a formal, provable defomt{as is strict privacy-
preservation) but it's consistent with the aims of potdrgaticipants in GATE-
way.

2.3 Assumptions

Most approaches to inter-domain traffic engineering canhaeacterized as self-
ish (where one provider acts unilaterally to improve its quanformance), or as
co-operative where the providers are willing to share imi@tion and co-operate
(exceptions being [31, 32]). In GATEway we aim to get the lwédioth worlds.
Note, we may still assume that the providers are selfish, ttunrquite the same
sense meant elsewhere. They will seek to maximize their @aimsgHowever, in
the approach we propose, we change the outcome of probleshsasithe Pris-
oner's Dilemma by introducing a type of trust. If the priscean trust each
other, then they can achieve the global optimum. Note thtt bee still acting
selfishly, but given the additional information, the cotreelfish choice is also the
global optimum.

The model we assume for network operators is sometimesi¢akeni-honest”.
It assumes that the providers are not malicious, i.e. théynai deliberately aim
to cause damage other network operators, without any pegin for them-
selves. They will not act like a “Dog in the Manger” (Aesopuch participants
are sometimes called “honest but curious”, because theysely to find out in-
formation, and exploit this information to their own bené¢éihd possibly to the
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detriment of other operators). This is a fair assumptiorabee given BGP’s cur-
rent security limitations, the current Internet relies @mést participants.

24 GAs

The concept of a Genetic Algorithm (GA) (see [38] and the washber of publi-
cation since) is based on the metaphor of Darwinian evaiutiosurvival of the
fittest. The idea, in brief, is to create a population of Soha to a problem, and
then let them reproduce and evolve such that we tend to ketégr Belutions to
the problem.

One key advantage of a GA is that the fithess need not be speicifetosed
form. For instance, GAs are often used in optimizing stig&fpr games where
the fitness is determined by competition between the mendfeaspopulation.
This advantage is key in our application because it allowstrties involved in
the computation to share only limited information aboutd#ses, rather than the
details of each others networks.

GAs may have the disadvantage that of being slow. Algorittirasare care-
fully tuned to the application in question often performtéaghan GAs, particu-
larly where large parameter spaces must be explored. HoytbeeGA approach
we develop has broadly similar performance to [6].

We extend the use of biological metaphors in GATEway to tleeaishe term
symbiosis In biology, symbiosis (sometimes mutualism) refers to thifferent
organisms that form a mutually beneficial union. A classeample occurs in
coral reefs [39]. Coral polyps are a small colonial organtat build large endo-
skeletal reefs out of calcium carbonate. However, they lyeintajority of their
food supply from photo-synthetic algae (zooxanthellaectvineside inside them,
and incidentally provide them with their attractive coliwa. The algae gain a
safe home, while the coral polyps gain a food supply — botkigsabenefit from
the interaction. Typically such organisms co-evolve ts #tate, i.e. both evolve
together jointly (ancient corals did not exhibit this reaship). Co-evolution
is not restricted to symbiotic relationships — it can alsauwcfor competitors
for instance — but the key is that the two organisms don’t neeshare genetic
material to perform such a co-evolution. We exploit this iAT&way.



Table 2: The Rocketfuel networks used in this study, listedbtonomous Sys-
tem Number (ASN).

ASN | Name PoPs (degree 2) | links

1| Genuity 24 74
701 | UUNet 48 | 368
1239 | Sprint 33| 130
2914 Verio 47| 176
3356 | Level 3 46 | 536
3561| Cable & Wireless 59| 592
7018| AT&T 35| 136

3 Evaluation Methodology

3.1 Test networks

We have tested GATEway on two sets of topology data. Randdwonles, and
Rocketfuel networks. While we also use random networks lidate GATEway
these tests are omitted, because they are consistent withdahittle to the find-
ings on more realistic topologies.

The Rocketfuel topologies [37] consist of a large number etimorks and
their peering links mapped primarily using traceroutese fietwork maps pro-
duced are not perfect, however, they represent the besintumaps showing both
the intra-domain and inter-domain topologies of a significaumber of large net-
works, and we avoid some of the problems in these network toyapsnsidering
the networks at the Points-of-Presence (PoP) level. Weerdrate on a group of
tier-1 networks, based primarily in North America (thougime have significant
components in Europe, Asia and the Pacific). We choose thexssaibe they all
peer with each other with multiple physical connectionsadidition, these net-
works are the largest, and thus provide the best test of Hialstity of GATEway.
The result is that we consider 7 networks, which each intereot resulting in 21
possible pairs on which to trial the method. Additionallyete is little point in
trying to optimize routing for degree one nodes (there iy amle link they can
use), and so we eliminate such nodes from the networks undsrideration. The
networks used are shown in Table 2, along with parametefsasithe number of
links and PoPs, which form the nodes in the graph.

The Rocketfuel data do not contain link bandwidths, and sthénabsence
of this information, we shall use the simplest possible agdion of equal band-
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width links (as in [27]). One exception to this policy is the will investigate the
impact of varying the peering link capacities because theks are often consid-
erably different from backbone links in a number of respeassa result of being
created through negotiations between multiple parties.

3.2 Traffic generation

The units of traffic we shall manipulate will Blews A flow represents the traffic
between some source and destination during some time ahtéhie shall ignore
time dependence here for simplicity, though some methodptimization have
been shown to be applicable to solving temporal probleniS]9and these meth-
ods could be easily generalized to apply here. Sources atmhaions of traffic
in IP networks are groups of IP addresses, often with a compnefix Note
though, that the groupings we use here are arbitrarily éedy the network op-
erators, i.e. they do not have to correspond to a particuédig customer, router,
or other logical structure in the network. The only consiras that we will not
divide flows when routing them, other than across intra-darVHECPs.

For simplicity, we shall use flows aggregated to the levelraffic between
PoP pairs. Note that this is not a requirement for the methogeneral an opera-
tor might wish to conceal the addresses allocated to p&ati®oPs, or simply the
number of PoPs in the network. Hence, they could use arihjtde-aggregated
prefixes, (for instance break the ISP’s address space ia%)/2r they could ag-
gregate address space allocated to routers. The choicaediepa the balance
between complexity and the level of optimization requirdef granularity re-
quires more computation, but perhaps allows a greater degr@ptimization).

We need to synthesize traffic matrices for our simulationd, 0 we extend
the simple from [40]. We generate the traffic demand matriwben nodes using
a gravity model with randomly chosen local traffic vectorafis, we generate
independent (mean one) exponential random variables

Xi’fm = the traffic at PoR in networkm in directionk,

wherek € {in,out}. The demand matrix elements giving the traffic frérto

J in networksm andn are D™"(i,j) = XZ-%)X}?). Although this method is
extremely simple, it was shown in [40] to match real traffiatnx statistics well.
Note that the mean of the exponential random variables i®s®te because this
is a scale parameter, and as such controls the total trafiavedwill see below,
we report relative performance metrics, so that the taaffitrvolume is not a key

parameter.
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3.3 Performance metrics

We evaluate the performance by measuring maximum utidimati However, the
maximum utilization on its own may reveal only the size of thefic, which

is being generated via a randomization process. In ordeetie a basis for fair
comparisons we will output the performance (the maximuiization) relative to
themeasured routingn the Rocketfuel data. Performance results are reported as
a percentage showing the maximum utilization of a techniglaive to the max-
imum utilization of the same traffic matrix given the measureuting. Smaller
values indicate better performance. In some places wetrédpodistribution of
these relative performance values, in others, the avenagresome set of results.

4 \Weight Optimization using
Genetic Algorithms

The problem of intra-domain traffic engineering can be esged thus: find the
network routing parameters that balances loads on therexiktks in a “bene-
ficial” way. There is a very simple approach to solving theardomain traffic
engineering problem, namely by using the shortest-pattmgwith a set of op-
timized link weights. This has the advantage of being easifylemented using
current IGPs.

We call this approach thehortest-path link-weight optimization probleand
it has been extensively studied [4-12, 15]. Despite the rappdimitation of
shortest-path routing, the method has been shown (fostieatietworks) to per-
form almost as well as the most general approaches to roatiaggble, and to
have many other advantages (see Section 2.1 for more Jetails

Take a network described by a gra@h= (N, £), where\ is the set of nodes
and¢ is the edges of the graph. We denote the number of nodes imapb gy N
and the number of edges I We seek to choose a functian: £ — IR™, giving
the link weights of each link, such that when we solve thePPdths Shortest Path
(APSP) problem, the solution minimizes the maximum uttiaa of the links
in the network. We use the notatian.,, c., and f, to denote linke’s weight,
capacity, and load, and the link utilization is defined taibe- f./c.. Given a set
of link weights, the APSP routing is the routing that minieszor alli, j € N
the distanced;; = -, w. between nodesandy, wherep;; is the set of links
along the path chosen betweeand;.

The problem of finding an optimal weight setting is NP hard fjd so we
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must find heuristic approaches to the solution of the probl8everal proposed
heuristic are based on GAs [7, 8, 11]. We use a slightly d&ffieiGA here in or-
der to make it easier to generalize to the joint TE probleme diromosome for
each member of the population is a vector containingor each edge. We re-
strict these elements to be representedchlyits, restricting the range of values to
we € [0,1,...,25 —1]. The GA algorithm is then:

1. initialization: create (randomly) an initial set &
solutions called the populatio®, = {x;}

2. while not finished
a. evaluate fitness:f(x;) of eachx; € P
b. generate a new population:the offspring
i. selection:select two parents from the population based on fitness.
ii. crossover:combine the parents genes to form offspring.
iii. mutation: with a probabilityq mutate each gene.
c. replace old population with offspring.

However, in designing a GA there is a great deal of flexibilityeach of the
mechanisms listed here. We take the approach here of usmgestechniques
with the aim of demonstrating the concept rather than pingithe best possible
optimization algorithm:

1. Crossover:We use a single (random) point crossover.

2. Mutation: We perform mutation gene by gene independently, with some
small probabilityg.

3. Selection: Selection is determined from the fitness functjn) based on the
maximum utilization of a given routing(x;) = 1/max.cg u., andRoulette
Wheel Selectigri.e., given a set of solutionf; }, we select a member of the
population with probability; = f(x;)/ > icp f(Xi)-

4. Termination criteria: We terminate the algorithm after a fixed numleof
generations.

In addition, there are many tweaks one can apply to GAs toongperfor-
mance. The only one we use hereigism, i.e. the retention of the best member
of the population during each generation with no crossovenwotation. This
results in a non-increasing maximum fitness for each geinaré property not
guaranteed otherwise).

We use thaneasured routin@s an initial value, seeded into the population.
This initial value does not have quite the same importande asany other opti-
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mization techniques, because it replaces only one of thialipopulation. Note
we confine our weight values to a smaller range of integens tha Rocketfuel
data, so our initial solution may have different routingifrthe measured routing,
and hence our results will not all start at 100% performance.

4.1 Validation of the GA approach

We tested the above approach on a range of simulated netimarkder to choose
reasonable parameter settings (results omitted becasgpacoé restrictions). Our
main parameters are the probability of mutatipr= 0.01, the population size
P = 50, the number of bits to use in representation of a weight= 4, and
2 elite solutions were retained. We compared our resulthded of Fortz and
Thorup (FaT) using their code, performidg = 10000 iterations for both al-
gorithms. Figure 1 (a) shows the performance of our appreachFaT as de-
fined in Section 3.3 by the maximum utilization of the appfoaelative to the
maximum utilization for the measured routing on the Roakathetworks. Both
approaches produce similar improvements (though FaT imesf@% better over-
all). Figure 1 (b) shows the computation times. The GA times lzetter by
27% on average. Although these computation times are nighifisant in some
cases, weight optimization techniques have a number ofgalyas. For instance,
Rougharet al.[15] showed that one could get a large part of the improveroent
weight optimization using a much smaller number of itenagicthereby creating
a potentially favorable tradeoff between time and perfaroea— we demonstrate
the same phenomena in Section 5.3.1. Furthermore, [15kh®oed that weight
optimization could be performed to create a set of weiglaswlere robust over a
period of at least 24 hours (taking into account predictioars, and daily varia-
tions). Hence, significant computation times can be anegtaver such periods.
In some cases we observe that the performance of both &lg@rivas some-
what limited. For instance, in Figure 1, the performancermapment for ASN
7018 was only around 70%. In this particular case we invatg)the reason,
which was that there were two components of the graph that weorly con-
nected. In particular, three PoPs in Florida were connedctéte rest of the North
American nodes via a single pair of links. Given only two Bnkhe opportuni-
ties for load balancing are somewhat limited. In the realvoet this would be
reflected in the fact that the two links in questions wouldh&ithave increased
capacity, or the poorly connected network segment woule tigtle traffic. This
appears to be a relatively common occurrence in the RoeNdtipologies, and
hence we wished to assess how much our results were biasedtbfeatures. To

14



do so, we excise the 3 Florida nodes (and 8 edges) from Roek&tSN 7018,
and perform the optimization on this new network. The resate shown in Fig-
ure 1 under the heading ASN 7018a. Clearly a great improvemas obtained
for the reduced network. In the remaining work in this paperwill continue
to work with ASN 7018a, the Rocketfuel topology without tHerka nodes, but

we leave the other topologies untouched, thus providingesocomtrast as to the
impact of this issue.
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Figure 1: Simple weight optimization using the GA Gr = 10000, and Fortz
and Thorup (FaT) also using 10000 iterations. The resutteshe mean relative
performance for 30 random simulations, and compute times.

4.2 Computational complexity

The algorithm proceeds in a number of iteratiéhsvith population size”, hence
its computational cost is proportional £, but the critical factor in the computa-
tional cost is the cost of evaluating the fitness functioncWwinequires the solution
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to the APSP problem. We use a simple implementation of thed=Warshall al-
gorithm to perform this step (the algorithm haéN?) computational complexity)
and Figure 8 confirms cubic complexity. The all-paths stsbpath problem can
be solved more efficiently using better implementations gkddra’s algorithm
but other elements GATEway will require(N?3) computations and so we do not
try to improve the APSP algorithm here.

5 Symbiotic Optimization

The previous section considered optimization over onlyglsinetwork, and sim-
ilar results have been described elsewhere. We now deshelgeneralization of
this approach to a pair of networks joined together at a speefinglinks. The

GA algorithm is extended to allow joint evolution of two “symotic” populations
of solutions, one for each ISP. As in biological symbiosis garticipants don't
have to share all their genetic material. However, therensesinformation leak-
age in our initial approach, and we consider how to limit iSection 6.

5.1 The problem

The problem we wish to solve here is the problem of optimizimg routing of
two connected networks. In principle this is no more comhax optimizing one
large network (comprised of the two inter-connected nekajor However, busi-
ness constraints restrict the type of routing allowed. Retance, transit routing
is not allowed between peers. One peer cannot use anotherkistbackbone to
transit its traffic across the country using its own netwankyat the end points.
Hence the simple generalization of shortest-path routrtbé joint network cre-
ated from inter-connecting the two peers will create unpiatge solutions.
Furthermore, as noted earlier, we wish to limit the exchamig@formation
between the two peers. The joint shortest-path solutiondvaguire each net-
work to share its topology, and traffic in detail. More pretystake two networks
G1 = (N, &), andGy = (M-, &), which are inter-connected by a set of peering
links Q, where forg € Q we haveg = (n, ny) wheren, € N; andn, € N>. We
can create a joint netwok = (N, £), whereN = N UN,, and€ = £ UEUQ.
We shall use the solution to the shortest-path (SP) linlghteoptimization prob-
lem on a joint network as a basis of comparison, because we fisvstantial
evidence [6, 9, 15] that it will be close to the best possiblging solution. To be
clear, in this solution (which we cajbint SP), the peering links have no special
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role, and we do not attempt to prevent transit traffic. Heheesblution is an un-
realizable idealization, but we use it as a loose lower bamgerformance, for
comparison.

At the other end of the spectrum, we will also compare reswits selfish
routing, where each provider optimizes its own routing witformation it can
measure itself. Thiselfishsolution will be poor because each provider cannot
anticipate the changes the other will make to its inbounffi¢rtaOn the other
hand, GATEway

1. can be computed with limited sharing of information;

2. prevents transit; and

3. isreasonably simple to implement with standard routnogqeols (e.g. shortest-
path IGPs and BGP).

We do this using the mechanism @fit point pinning Given a traffic flow from
network 1 to 2, we would choose a particular exit point, amdtpis flow so that it
uses that exit point. There are a number of mechanism ond asalto implement
such a pinning (see Section 5.5), and the pinning could Henpeed at a variety of
granularities. As we have previously discussed, we shaBicer PoP level flows.
We also simplify by pinning based solely on source or dettinanot both. In the
examples we show source based routing, as it is slightlylsimpexplain, though
destination based routing (which is an equivalent, thoughsposed problem)
would be easier to implement. For example, traffic from node network 1,
to nodej in network 2, would be pinned to peering linki) € Q (note we can
specify a peering link by its end poings= (k,m), k,m € N or its index in the
set,e.0q =j € [1,...,Q]). The exit point chosen for a given traffic flow is not
necessarily the closest to the point of origin, so this isha#tpotato routing, but
we do not need the full flexibility of a scheme like TIE [17].

Before we can continue, we must also briefly discuss therdifilee between
Origin-Destination (OD) demand matrices, and IngresseEgJ(IE) traffic matri-
ces. As noted earlier we will simulate using an OD demandimgénerated via
a gravity model, which specifies the traffic from origin to tiegtion in the joint
networkG, and so is &V x N matrix, whereN = N; + N, andN; = |V;] is the
number of nodes in network Denote the OD matrix by) where its elements
D(i, j) are the traffic from origin to destinatiory, and we can writeD in the

form s
D> D>
D = ( D21 p22 ) )
where D™" is the matrix whose element3™" (i, j) give the traffic from node
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to j in networksm andn.

The IE traffic matrix describes the traffic matrix as seenrirdly on a single
one of the networks, which is not the same as the demands4$ge®of detailed
explanations of this phenomena). For instance, for netdptike observed traffic
matrix will not be D!, Using pinning, we can easily construct an |E traffic matrix
T®*) for networkk from the OD matrix. We simply take, for example

T(i,j) = DY)+ S DY(i,m)I(g(i) = (j.*))

m=1

T+ S D2 (. )T (g(m) = (7).

m=1

for all nodesi,j € Nj, wherex is a wildcard, and/(-) denotes an indicator
function, i.e.I(A) = 1if Aistrue, and O otherwise. The computation T8¢ is
similar. Notice that the matriceés® may not follow a gravity model even where
D does. Computing™®) takesO(N} + N2N,) operations, and so the resulting
computation is of similar order to the shortest-paths ca@mpan. The demands
D% and D*! are measurable by either party using flow collection. Therival
demandsD** do not have to be shared.

In addition, we need to be able to compute the traffic on eaehiqeelink ¢,
which we can do by

N1 Na

02— SST DRk m)I(g(k) = J),
k=1m=1
No N;

PPV = 33 D2k, m)I(q(k) = ),

k=1m=1

wherer(? andr®" are vectors of the loads on peering links. Both providers
know the capacity of peering links.

Network operatori can now compute the shortest paths via the APSP, and
hence compute the internal links loads on netwgrksing only local information:
the IE traffic matrices, a set of exit points, and link weights®;.

5.2 GA solution

Consider the problem above. We wish to find a solution thaitditie sharing
of information to the necessary minimum, and yet allows rafgation to take
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place. We shall apply the metaphorsyimbiosishere, allowing each network to
co-evolve without sharing all their genetic material.

We start by specifying the chromosomes — there will be four. éach net-
work we use one chromosome to describe its weights, and entahdescribe
the pinning positions. We separate the two groups of inftionaas we may
wish to perform cross-over and mutation in different wayseach type of gene.
More specifically, each member of the population will be diésc by the vec-
torsw;, andq;, giving the links weights, and pinned exit points, respastyi, for
networksi = 1,2. As before, the weights are restricted|[to. .., 2% — 1] and
¢ €[1,...,Q], where there ar@ peering links. Network operatéholdsw; and
q;. The values of the pinnings are shared, but the network ueagle not, thereby
keeping secret each networks’ internal topology.

Each network uses the traffic matrices, pinnings, and itsiotamnal weights
to compute its own internal link utilization, and the pegrimk utilization. The
information necessary to compute the joint fitness funcftbe maximum uti-
lizations) is shared, so that each network knows the joineés of all members
of the population. From this each performs selection, sigatie seeds used in
pseudo-random number generation such that they each Sedexsame population
members. The two then perform cross-over, and mutatiorpigragently (only on
the chromosomes they hold).

5.3 Evaluation
5.3.1 Performance

We test the performance of techniques by simulating usiagrnbthodology de-
scribed in Section 3. That is, we choose a pair of networksseliopologies and
interconnects are given by the Rocketfuel data, assumeéipkcities are equal,
and we generate a random (joint) traffic matrix describiaffitr inside each net-
work, and between the two. We perform 10 realizations of @hthe 21 possible
pairs of network leading to a total of 210 simulations. Focheaimulation we
compute performance, defined in Section 3.3 to be the maxintiliration of a
technique relative to the maximum utilization of the measiRocketfuel routing
(smaller percentages are preferred).

The Cumulative Distribution Function (CDF) of the performea of each tech-
nique is shown in Figure 2. The-axis show the proportion of tests with perfor-
mance below the specified performance, so curves furthbetieft indicate better
performance and there is no averaging over simulationsisfitjure. Note that
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we shall defer discussion of the “symbiotic 2" algorithm iuSection 6, where
we present an alternative algorithm that improves privatya(cost in terms of
performance).

Unsurprisingly, the joint SP (Shortest-Paths) algorithas lthe best perfor-
mance. It is noteworthy that its performance ranges betv8eaind 100% with
an average of 46.6% (Table 1 summarizes the average perfoenaSummariz-
ing, joint SP routing always improves performance in corguerto the measured
routing on these networks, and the improvement ranges freingtfairly small,
to a factor of five, with the average being around a factor ti@wever, as earlier
noted, the joint SP solution is unrealizable.

Given that this routing is unrealizable, and that the nek&wam question were
not specifically designed to carry the simulated trafficsinatural to ask how
important the above improvement is. We can see this by ceriegihow well we
do using selfish routing, which should in principle accountthe simulated traf-
fic. The performance of selfish routing ranges to values gréban 120% (values
over 100% indicate that we are actually worse off with thigtiog scheme). In
about one third of cases, providers are worse off if they elfiskly. This result
contrasts strongly with that of joint SP routing, and so we tlk joint solution as
a benchmark against which to compare our approach.

The performance of the symbiotic approach is close to thahefjoint SP
algorithm. Its average performance relative to measureting is 51.5%, so
our method provides roughly a factor of two performance mepment, but it is
realizable even with the privacy constraint.

Figure 3 shows the performance after each iteration forglesgimulation of a
specific network pair. Most importantly we learn from thigagh that the majority
of improvements in performance occur early on in the optatien. Hence, one
could find useful tradeoffs between performance and spea@phs for other
provider pairs, and other simulated traffic matrices algpstt this view.

Additionally, we considered how various characteristitshe networks in-
fluenced performance. Figure 4, shows that the performaasecarrelated with
the network size. We speculate that this is because largeories provide more
opportunities for route diversity, which may be beneficalghortest-path routing
optimization (we see a similar phenomena in Section 5.4af@dr networks).

5.3.2 Peering vs internal links

In the work above, we have deliberately kept things simpléawming all link
capacities equal. However, anecdotally, peering linksaditen supposed to be
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Figure 4: Performance of the symbiotic algorithm as a fuomcdf the joint net-
work size.

smaller than internal links. Peering links are built througegotiation between
competitors. Neither party wishes to pay for the links, amthey are sometimes
allowed to reach a state of congestion before any actiorkentéo upgrade the
links. In comparison, anecdotal evidence suggests that majsr backbones are
relatively lightly utilized, and are likely to remain so werddue to the requirements
for failover capacity.

Figure 5 shows the relative performance of the algorithmessipg link ca-
pacity varies with respect to backbone capacity. The fighosvs the maximum
link utilization relative to the measured routing for thedRetfuel networks 1239,
and 7018 averaged over 10 simulations. The figure also shmsvenaximum
peering link, and internal link utilizations. For normadiz peering link capacities
below about 0.4 the performance of the algorithm is domuhbtethe peering link
performance, i.e. the maximum link load occurs on a peeiimg lUnder such
circumstances, the relative performance is dominated bg-pdcking problem,
which unsurprisingly can be solved significantly bettenttiee measured routing.
On the other hand, as the peering capacity increases, thenkeperformance
becomes dominated by the internal link capacities.

Note that as the normalized peering capacity becomes lHrg@erformance
approaches the individual performance of network 1239vshio Figure 1) in-
dicating that this network is the bottleneck in this scemakFowever, despite the
dominance of this component of the network, other link tcafire being reason-
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ably balanced (as shown by the comparisons between theymeeting, and in-
ternal performance shown in the figure). This might be evetebaccomplished
if we used a less simple performance metric such as consiitbetew
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Figure 5: Maximum utilizations of the network, internalks) and peering links
as the normalized peering capacity varies.

5.3.3 Alternative metrics

The algorithm above has been shown to find a good min-max tiikation solu-
tion to the routing problem. However, network operators mat/share this goal;
they may wish to optimize other objective functions. A keyantage of GAs is
their flexibility with respect to objective functions. Weuatested our approach
against the metrics drawn from [6, 9]. It has the advantage itincorporates
congestion information from the whole network, not just thaximally utilized
link. The metric of [6, 9] is given by a sur, C'(u.), whereC'(0) = 0 andC'is

a piecewise-linear, increasing function of utilizationtfwincreasing derivative).
We then use fitnesg(u) = 1/ Y. C'(u.).

Figure 6 clearly shows that the new metric is optimized (it fiven the log
y-axis the improvement is much faster than for the max-atiian). The figure
shows not just the total congestion function, but also tinetion for each individ-
ual network, for a particular pair of Rocketfuel networksielreason for showing
the individual networks results is to show that gains areerfad both networks,
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and that the gains do not depend on the ordering of the twdlfieenaximum and
minimum congestion functions are both being optimized diameously). Link
utilization results are omitted but support the same view.
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Figure 6: Performance when minimiziig, C'(u.).

5.3.4 Robustness

TE is typically applied predictively, i.e. one measuresribewvork, determines the
routing to be used, and then this is applied in some future titerval where the
traffic may not be identical to that measured. In additionasueements them-
selves may contain errors, for instance where samplingfereance is used in
data collection. Hence, robustness to measurement orctidnoise is a highly
desirable characteristic of any TE algorithm. One of theaatlwges of optimal
weight assignment is robustness to noise [5, 13, 15].

We test the robustness of GATEway by determining the opt{iorahear op-
timal) routing using the symbiotic GA, but then measurirgggerformance on a
network where a different traffic matrix is applied. For eatitial OD demand
matrix D(i, j), we measure performance on a traffic matrix with multiplicat
noise, i.e. De, (i, 7) = D(4,7) [1 +oN(i,7)], whereN(i, 7) is an independent
standard normal random variable, for eacand j, where we vary such that
the standard deviation of the noise relative to the initiaffic varies from O to
20%. For each of the 10 initial traffic matrices we repeat thperiment 10
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over 100 simulations.

times, adding different noise each time, for a total of 10pezdnents. Figure 7
shows the results for the Rocketfuel networks 1239 and 70h8&.figure shows
both the average performance, and the worst case perfoenfarax). Even the
worst performance over the set of 100 experiments showd greansitivity to
the errors. Similar results are observed for other valugseefing capacity. It
may seem surprising that the results are quite so inseasitithe input traffic, but
this is roughly consistent with the results of [5, 13, 15] jethshowed remarkable
insensitivity to noise in the simple weight assignment jgob

5.3.5 Computational Complexity

The issues surrounding computational complexity of trgeathm are essentially
the same as those for the simple intra-domain problem,tmeguh O(N?) com-
plexity. Note though that the size of the network on which waleate shortest
paths is the individual networks, not the joint network, aoedhe computational
time isO(N} + N3) which is much faster than th@((N; + N,)?) computational
time for the joint network. Given two equal sized networks thduction in com-
putation time is a factor of 4. Figure 8 confirms the algorighromplexities,
showing computation times and fitted cubic curves.
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5.3.6 Communications Cost

The implementation of this algorithm as a distributed alfpon requires a transfer
of information between the two peers. The information torbadferred consists
of:

1. The pinning points for each member of the population, &mhegeneration.

2. The information needed to compute the fithess functionijncase, the max-
imum link utilizations).
The information require to compute fithesses is small coeghén the pinning
information. The pinning information requires vectorsiaesV; to be transmitted
for each network, for each member of the population, and at each generation.
Hence the communication volumed¥ N,,., PG). Note also that each value to
be transmitted is an integer in the rande. .., Q], where( is typically small
(< 16), and can therefore be represented with around 4 bits wit@apression.
However, after an initial random selection, the pinningtuex are not random,
but are the result of a highly non-random process of evatytemd so are quit
compressible. We tested this by writing the population ahpig vectors for each
network to a file (for the example considered above with the metworks ASN
7018 and 1239), and usimgzip to compress the files. Figure 9 shows the results
with respect to the number of iterations (generations) ef @A. Compression
ratios of around 4:1 were achieved within 10-15 generatioftsus the pinning
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data can be communicated with around 2 bits per value. Gigesmpeter values
used here (for instancé = 50, Q ~ 10, N ~ 50), the communications cost is
< 1 kB per generation.
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Figure 9: The achieved compression ratios as a functioneofitimber of genera-
tions of the GA P = 50, Q = 10, N = 50).

5.3.7 Other violations of assumptions

The largest assumption in all of this work is the “honest lhuwritaus” assumption.
It is a fair assumption — the current Internet relies on tisisvall, given the rela-
tively insecure nature of inter-domain routing at presettwever, it is interesting
to consider what happens if this assumption is violated.gimathat one of the
ISPs either lies about, or is mistaken in the data it providethe algorithm, or
chooses not to follow the routing determined by the algaritht is a simple mat-
ter then for the other ISP to measure the traffic across itsnmeknks using flow
capture, and from this determine that a problem has occulféide problem re-
duces their performance, then they may either renegotiagvarouting (via our
algorithm or otherwise), or go back to their old routing, eyt are no worse off
than before commencing the use of this algorithm. The oBBmhay possibly be
better off in the short run through its dishonest behaviot,ilb the long run they
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Figure 10: Performance of multi-party GA as a function of tinenber of partici-
pants, relative to performance for two participants.

are unlikely to make any more gains than they would by vintaturrent BGP
policies.

5.4 Multiple-party optimizations

The extension of this work to more than one party is quiteigititeforward. N
peers (in the sense of neighboring networks that do not ahamsit) can perform
the same type of optimization, such that each network retdie information
about its own link weights, and shares appropriate pinnivigseach peer. Given
the GAs ability to cope with arbitrary fithess functions, generalization is obvi-
ous. Figure 10 shows relative performance of the optinopatis the number of
participants increases. Again this seems to be a resuleohtneased diversity of
routes in a larger network.

5.5 Implementation

The GA would use a protocol independent of the routing prtothe optimiza-
tion only requires concrete instantiation in routing onoeogtimal solution has
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been determined. There are two approaches to instantatetived routing us-
ing standard, existing routing mechanisms. Firstly, tlimgetechniques such
as MPLS, or IP over IP encapsulation allow explicit choiceexit points. Such
techniques have already been proposed for use in [17]. Tliimpgives a high
degree of control both over the exit points, and the pathrtddetraffic, though
in GATEway the route of tunnels would be chosen using shbpgaths (only exit
points are fixed).

Alternatively, one could use BGP mechanisms to alter eximgso Mecha-
nisms such as local preference, and MEDs are used to corit@ants. These
apply control across a whole network (e.g. the exit pointdibrsource nodes
for a particular destination would be the same), which iegph destination based
pinning. We showed that such a pinning would still provideadbent gains in per-
formance. Even if BGP is used, only exit points are change@nsouncements
outside the AS are not needed, and iBGP convergence timdsenituch shorter
than eBGP convergence times.

At present TE is typically performed as needed, in a ragdtehocfashion.
However, with automated optimization it could be performeglularly. The time
interval at which we perform TE is a tradeoff between moreiseeoptimization
(using a fine-time grain), and the cost (potential packes thging routing recon-
vergence) of frequently changing network routing. As notee do not need to
wait for slow eBGP reconvergence, and so the impact of rgutivanges would be
guite small. On the other hand, shortest-path routing dpéition has been shown
to work well over for traffic with daily variations [9, 15]. Sbseems reasonable
(as a starting point) that the TE should be performed onceger

There could be a short period between the optimization anudeimentation
phases where the routing on the two networks not synchrdifiaghe sense that
the two are not both using the same optimized polices). Tdmsiat cause route
loops as the routing protocoése synchronized, but may result in a brief period
of suboptimal routing. The length of this period would beedetined by how
quickly the agreed routing can be implemented in the regmenetworks. With
automation this could be accomplished in seconds to minbté®nce again note
that the only effect would be some suboptimality in routiagg we have already
shown that the shortest-path routing approach is quitensisee to noise, and so
we should no expect serious consequences during this phase.

Furthermore, network providers often have a maintenancelow (in the
early morning when traffic is light) for making network chasgso that they have
minimal impact on customers. It would be desirable to scleed& activities at
the end of this interval. As the maintenance window is chdsebe during a
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period when traffic is light, some small degree of suboptitpah routing will
have negligible impact. Furthermore, most network chargggpen during the
maintenance interval, and so performing TE at the end ofitikesval allows the
network to adapt in a timely fashion to any topology changes.

6 Privacy Maximization

The above approach to joint network optimization limitsoimhation sharing, but
there is still some leakage through the pinning vectors andds functions. The
joint fitness calculation requires the ISPs to share maximtilmation data. This
problem is alleviated in part through the use of the util@ametric of [6, 9], but
can be improved further.

One of the advantages of the GAs is that the fitness functiotbearbitrarily
chosen. All we really need to know are the selection proiiadsifor each member
of the population of possible solutions. We have a polynbitimae algorithm for
constructing these probabilities, and therefore Yao’s pacy protocol applies.
This is now a well researched area (for instance see some odfitrence at [35]),
and so, given space limitations, we only briefly describeageroach. There are
three steps: firstly, we must solve the APSP for each netvgpvien its internal
weights. This can be done internally by each provider. Thesé routes must be
used to compute the load on each link from the OD demands.nemial links
fe = X1 D(i,j)I(e € py;). This can be directly computed wheigi € N,
but fori € N, andj € N,,, k # m we need to break the indicator into two parts

I(e € pyy) = Xk:f(e € pir)L(q(i) = (k,*))
—i—ZI(e € pmj)L(q(i) = (%,m)),

whereq(i) is the peering link for traffic originating at node The number of bits
for D(i, j) is O(nN?) where we represent the values withbits, while for the

indicator functions there at@( EN? + N log () bits. Yao’s protocol’'s communi-
cations cost is linear in the number of bits [34], and so negdd (nN? + EN? +

N log Q) overhead. The above computation has to be performed foresiysh so
given that typicallyE > n, and we can write the complexity & £2N?). The

third step is to compute the maximum of these values, for whistandard ver-
sion of Yao’s protocol is sufficient, and with comparably lgible overhead (as
is the overhead of computing the peering link loads). Addiilly, secure opera-
tions can be composed, hiding intermediate data. Hencepdssible to perform
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a step of the symbiotic algorithm which satisfies the debtnitf privacy preserv-
ing, in the sense that the two ISPs need not share (i) utdizatata, (ii) pinning
data, (iii) any other details of their internal network. Wl ¢his solutionprivacy-
maxand note its performance is the same as the previous symbaitition. The
cost for using this approach is an increased communicatiostsassociated with
performing Yao’s protocol.

An alternative to strict privacy preservation via Yao’s foal is to separate
selection into the two networks. More precisely, each ndtwomputes its own
fithess function, and each uses this to select one parentdss-over. The two
networks share the pinning information which is needed topmate link utiliza-
tions (again Yao’s protocol could be used here to avoid thigrmation being
shared). However, the two network use completely indeparfitaess functions
— the fitness functions need not even be the same, thus ag@dinneed to share
this information. There is a cost in performance. The meifwddch we refer to
as “symbiotic 2”), does not perform as well as the simpleoatgm. The results
for this independent symbiosis are shown in Figures 2 and@BTable 1 summa-
rizes the performance of all methods considered here. Téege performance
after 5000 generations is 68.4% as compare to 51.5% for thequs algorithm,
though still a considerable improvement on the selfish gmiuiThe performance
reduction occurs because, although we still use elitisith eatwork chooses its
own elite member of the population without knowledge of theefss function of
the other network. As a result, the chosen elite memberseoptipulation are
not necessarily elite from the point of view of the other natkvor a joint fitness
function. Hence performance (as measured by the joint maximtilization) is
no longer monotonic. Figure 3 shows this non-monotonicitye final solution
is actually worse than some of the solutions chosen alongvitye but without
knowledge of the joint fitness, we have no way to know this,@mabse the better
solution.

Note that the results for “symbiotic 2” also illustrate ametimportant point.
In these examples we ushfferentfithess functions in the two networks. The
fithess are computed independently, so this is easily imcated.

7 Conclusions and Future work

This paper presents GATEway, a set of algorithms for jointoBEveen two net-
works who do not wish to make disclosure of information aktbefr networks.
We demonstrate a distinct advantage to combining infolonatbut we present
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methods here that allow combination of data, without negtlinshare it. Such
approaches could have a significant impact on the way netegekators interact.

There is a great deal of interesting work leading on from plaiger. Initially
we may find improvements of the GA, but the GA is highly flexjlde we an-
ticipate being able to apply modifications to solve more ssiffated problems
considered in the TE literature, for instance optimizedirguthat works well for
failure scenarios [18, 19]; that can find single weight sgtifor a range of traf-
fic matrices [9, 15]; where additional constraints are ingap%r applied to TIE
routing [17].

The approach we have proposed here for a specific problentuallycquite
general. It could be applied to other network problems, fistance inter-ISP ca-
pacity planning, and perhaps it is also possible to exteestimethods outside of
the networking world. The important point is that GAs make #pproach inher-
ently flexible to a range of problems where information shgis undesirable.
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