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Abstract

There are a group of problems in networking that can most naturally
be described as optimization problems (network design, traffic engineer-
ing, etc.). There has been a great deal of research devoted tosolving these
problems, but this research has been concentrated on intra-domain prob-
lems where one network operator has complete information and control. An
emerging field is inter-domain engineering, for instance, traffic engineering
between large autonomous networks. Extending intra-domain optimization
techniques to inter-domain problems is often impossible without the infor-
mation available within a domain, and providers are often unwilling to share
such information.

This paper presents an alternative: we propose a method for traffic en-
gineering that does not require sharing of important information across do-
mains. The method extends the idea of genetic algorithms to allow symbiotic
evolution between two parties. Both parties may improve their performance
without revealing their data, other than what would be easily observed in any
case. We show the method provides large reductions in network congestion,
close to the optimal shortest path routing across a pair of networks. The
results are highly robust to measurement noise, the method is very flexible,
and it can be applied using existing routing.

∗Corresponding author.
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1 Introduction

Optimization is the natural approach to many problems in networking. For in-
stance: network design, traffic engineering, and routing are all optimization prob-
lems. We typically seek the solution that minimizes some (perhaps abstract) cost
across the network in question.

However, there is no one authority which can perform such an optimization
for “the Internet”. The Internet is broken into many Autonomous Systems (ASes),
each of which is managed independently, and these individual sub-networks are
often unwilling to co-operate. Hence, many problems in networking are treated as
game-theory problems with selfish participants, each trying to optimize for their
own benefit alone. However, it has long been known [1] that selfish behaviors can
result in poor outcomes.

However, network operators are not entirely ”selfish”. For instance current
Internet routing relies on a certain amount of co-operationto ensure smooth op-
eration — when networks don’t connect properly, the first thing operators do is
talk to each other on the phone. Their apparent unwillingness to co-operate arises
frequently from an inability to share data that might revealtrade secrets, or violate
privacy legislation. Without shared information, it seemswe cannot jointly opti-
mize more than one network, and so the participants are forced to a more selfish
model.

This paper describes an approach based in part on the idea of privacy-preserving
distributed computation. Such computation can be used to create methods for joint
optimization between networks, without the type of “risky”co-operation that most
previous methods of joint optimization require. We focus here on the inter-domain
Traffic Engineering (TE) problem. In particular, our methodis aimed at allowing
TE to proceed without the providers sharing information that they consider pri-
vate. This prevents the partners in the optimization exploiting information gained
about its competitors, prevents gaming of the situation, and provides a basis for
trust.

We exploit two key ideas: firstly, we use an optimization heuristic based on the
metaphor of Darwinian evolution, commonly called a GeneticAlgorithm (GA).
GAs proceed by describing the optimization variables usinga series of “genes”.
A population is created, allowed to compete, and the most successful are allowed
to reproduce. We call our approachGATEway(Genetic Algorithm Traffic Engi-
neering). GAs are ideally suited to cases where the objective function is hard to
compute, and we use this feature here by extending the metaphor to allow sym-
biosisbetween pairs of providers. In nature, symbiotic organismsjointly evolve,
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but they do not need to share genetic material to do so. Analogously, GATEway
allows two providers to optimize their routing without sharing the details of their
own networks (their genes). Despite this secrecy, we show that on Rocketfuel
networks GATEway dramatically improves performance as compared to existing
provider routing, and selfish routing procedures. In fact, GATEway provides re-
sults within 5% of a reasonable lower-bound on the possible performance, and
about 40% better than the closest equivalent selfish routing.

As in biology, some information sharing is still required even in the above
approach, primarily in the form of fitness functions. The fitness of each member
of the population must be evaluated (in biology this would beimplicit in whether
individuals survive to breed). We then use techniques from the secure distributed
computation community to substantially reduce even this modicum of information
sharing. This allows the above optimization to be conductedwithout leaking any
direct information about the providers, for instance, theydo not need to share
topology, link capacity, internal traffic, or routing details. In fact, in the strictest
version of GATEway, the providers share almost no information at all, though
there is a penalty to be paid for such parsimony. Ironically,despite sharing less
information, the communication cost increases.

In more detail, we compare five alternative techniques for performing joint
TE between several networks. All are based on shortest-pathweight optimiza-
tion techniques because of their simplicity, ease of implementation, and robust-
ness [13,15]. As benchmarks we compare routing where each network optimizes
its own routing selfishly, and routing where we treat the group of networks as a
single large network over which we perform a joint shortest-paths optimization.
Against these, we compare three new algorithms:

• symbiotic: the simple symbiotic approach outlines above.

• symbiotic 2: the symbiotic without shared fitness function calculation.

• privacy-max: a technique that exploits formal cryptographic techniquesfor
privacy-preservation to minimize the amount of leaked information.

Table 1 summarizes the results, including the information that needs to be shared
by each algorithm. The notation is defined later, but in summary, the joint ap-
proach requires sharing of all data (network topologies, link capacities, and inter-
nal traffic matrices (we assume that the inter-domain trafficmatrices between a
pair of network operators are measured by each participant). The selfish approach
does not require any sharing of data, but its performance (91.2% on average) is
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poor compared to the joint approach. The first symbiotic algorithm requires that
we share only our choices of egress points for traffic, and fitness calculations over
a population of possible routing solutions. The resulting performance is 51.5%
– very close to the joint approach. The fitness calculation carries relatively lit-
tle information, but if we are concerned about this leakage then we can restrict
transmission of fitness functions, but as noted this reducesthe performance (to
68.4%). We also present an alternative method “privacy-max” which only needs
to share selection probabilities across populations. Thismethod therefore reduces
information leakage, but this time the performance is good and the cost is that
the communications cost increases asN2 (whereN is the number of nodes in the
joint network).

Table 1: Comparison of approaches. Communications cost for the privacy-
maximization approach are a worst case, with the likely costbeing significantly
smaller. Performance is given in terms of average maximum utilization relative to
the measured routing case (smaller percentages are better).

Approach Shared data Communications cost Performance
joint SP Gi, ci, wi, D O(N2 + EK) 46.6%
symbiotic qi, maxe∈Ei

ue O(GPNmax log Q) 51.5%
symbiotic 2 qi, O(GPNmax log Q) 68.4%
privacy-max sel.prob.sp(xi) O(GPE2N2) 51.5%
selfish none zero 91.2%

Applying symbiosis to GAs represents a new approach to secure distributed
computation. Previously, many of the algorithms applied for secure distributed
computation have been based on Yao’s two-party protocol, which can compute
any polynomial time function. We show here that we can find approximate solu-
tions to NP-hard problems. The problem we consider here is quite specific, but
there are many other fields where similar issues are encountered. Our approach is
quite generic, and so may be applicable to other problems both in network engi-
neering, and outside.

We further address some of the practical problems of using such a protocol.
We demonstrate the flexibility of the approach by using alternative optimization
objectives and showing performance improvements increasesignificantly with the
number of networks using the method, and we also find that the method is highly
insensitive to measurement noise. The symbiotic methods also actually improves
computation times in comparison to the joint algorithm. Additionally, we demon-
strate that such an approach could be practically implemented in today’s networks.
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2 Background and Related work

2.1 Traffic Engineering
There are many tasks in network operations which fall under the heading of op-
timization. In this paper we shall concentrate on Traffic Engineering (TE), the
process of balancing one’s traffic across the existing linksin a network. One may
think of this as optimizing the routing parameters of a network, such that the re-
sulting routing is “beneficial” in some sense. The routing parameters determine,
for each source-destination pair, the fraction of traffic going on different paths
from the source to the destination. Many TE techniques have been presented (for
examples see [2–15]). The majority of the TE literature concerns intra-domain
TE. That is, optimization of routing parameters within a single network. There
are many approaches to this problem, though the two most prevalent are given
below.
Explicit path where the traffic is arbitrarily routed to satisfy the results of a multi-
commodity flow optimization [16, Chapter 17]. Explicit pathrouting is generally
instantiated through MPLS (Multi-Protocol Label Switching) or IP-in-IP encap-
sulation [17].
Shortest-pathwhere the routing uses shortest-paths, but the link weightsare ar-
bitrarily chosen as the result of some optimization. Shortest-path routing is ap-
pealing because it can be implemented easily using today’s most commonly used
Interior Gateway Protocols (IGPs) In these protocols each link is associated with
a positive weight, and path length is defined as the sum of the weights of all the
links on that path. Traffic is routed along the shortest paths. In cases of ties the
flow is generally split (roughly evenly) across Multiple Equal-Cost Paths (MECP).

Explicit path optimization has less constraints, and therefore must achieve a
superior solution to the shortest-path optimization. Naively, one supposes that
explicit path optimization will perform significantly better. However, there is now
substantial literature supporting shortest-path optimization. It has been shown
that (for realistic networks) one can get within a few percent of the performance
of explicit path routing [6], even where the inputs contain prediction or inference
errors [13,15]. What’s more shortest-path optimization can choose sets of weights
that perform well over a range of traffic (say the variations over the course of a
day) [9,15] or under link failures [14,18,19].

Either technique is appropriate within a single network, but both have flaws
for inter-domain TE, a topic of recent interest [17, 20–28].The Internet has a
broad two-level hierarchy in its routing, separating intra-domain routing from
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inter-domain routing. BGPv4 (the Border Gateway Protocol version 4) is the de
facto standard for inter-domain routing. When consideringinter-domain rout-
ing, one must consider the interactions between IGP and BGP [29, 30]. Inter-
domain MPLS solutions could in theory avoid some of the problems of inter-
action, but there are still practical complexities in usingMPLS in inter-domain
routing [26, 27]. Shortest-paths routing cannot be used because it might violate
BGP policies. For example, peering agreements typically prohibit transit traffic
(i.e. traffic that use backbone B to transit between two points on backbone A), but
shortest-path routing allows transit.

There is another problem: traditional traffic engineering algorithms require
complete topology and traffic information from all networks. ISPs are typically
unwilling to share information such as their topology, linkcapacities, internal
traffic volumes, and routing policies, particularly with potential competitors. As
noted in [27] optimization methods which do not have complete information often
fall short in performance. Similarly [31] shows that if ISPsco-operate in deter-
mining inter-domain routing they can achieve better performance. Can we still
attain this improved performance if the ISPs will not share information? It is this
problem that we concentrate on here.How may we perform inter-domain traffic
engineering without sharing detailed topological and traffic information?This is
the major difference between our work and the majority of theliterature on TE.

The primary problem we consider here is a connected pair of ISPs who wish
to optimize the routing of traffic on their joint network. We do not separate the
problem into separate intra- and inter-domain TE problems,but regard the joint TE
problem. The most closely related works to our own are [31,32]. Our results agree
completely with [31] in that ISPs may gain much larger benefits from TE if they
cooperate. We attempt to go further in providing secrecy forthe parties. In [31]
the providers must reveal opaque preference classes per flow. These certainly hide
a great deal of the internal information of a network, but still open the network
to indirect inference about its properties if not very carefully implemented. We
aim to show just how little information needs to be shared to perform a joint
optimization, and the tradeoffs between sharing information and performance.

GATEway is pragmatic in the sense that we aim to solve the problem in a way
implementable using current routing protocols without modification. The primary
constraint this applies to our work is that we use BGP for inter-domain routing.
BGP provides quite good means to control outgoing traffic, but only limited means
to control an ISP’s incoming traffic. However, if two networkoperators jointly
control their outgoing traffic the effect is control in both directions. In [31] this is
achieved through negotiation of the exit points. We shall also aim to control exit
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points for traffic, though the choices will only be negotiated implicitly. We will
refer to the type of routing solution we consider aspinned-exit routing, because
the ISPspin the exit point of particular flows. However, we will use shortest-
path routing within an ISP, and we will not allow path sharingother than across
MECPs.

Evolutionary algorithms have been applied in this context before [28], but that
paper is concerned with quite a different issue, namely the fact that there can
be multiple objectives when performing inter-domain TE. The paper searches for
non-dominated fronts in order to describe characteristicsof inter-domain routing,
whereas we are looking for particular solutions to a single objective optimization
problem.

2.2 Privacy Preserving Computation

The problem we consider comes under the heading ofsecure distributed compu-
tation, i.e. computing some function of several pieces of data without explicitly
combining data (and thus revealing it). Another term used todescribe this would
beprivacy-preserving multiparty computation(we use the terms synonymously).

The area of secure distributed computation has been heavilyinfluenced by
Yao’s two party protocol [33, 34], which is a protocol between two peers that can
compute any polynomial-time function pair(fx(x,y), fy(x,y)), wherex andy

are the inputs andfX(·) andfY (·) are the functions of interest to the two parties
X andY , respectively. The impressive thing about the protocol is that neither
party learns the other’s input data, or their output, i.e.X only learnsfX , not fY

or y. The classic example of Yao’s protocol is the computation ofthe minimum
of two values. The protocol requires two rounds of communication and hasO(n)
computation and communication cost (where the numbers are represented inn
bits). However, the protocol is not always efficient, and so many techniques have
been developed to improve computational complexity and communications costs
for specific problems. This area is now well developed – see [35] for a listing of
a number of significant papers. Relatively little work has been done on privacy
preserving computation for Internet applications. Brickell and Shmatikov [36]
provide an algorithm to solve the shortest-paths through a pair of connected net-
works, and Machiraju and Katz [32] consider the flow maximization problem for
a pair of networks. Note though that these both have polynomial time algorithms
for the non-distributed problem. Yao’s two party protocol,and related approaches
provide methods for computing polynomial time functions. The problems here
are NP hard.
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Also importantly, note that in some problems, even though analgorithm leaks
no side-information,X or Y might still derive information about the inputs from
the output alone. A good example is the shortest-path problem: the privacy-
preserving algorithm for shortest paths on a pair of connected networks is strictly
privacy preserving [36]. However, knowledge of the output (shortest-paths) is suf-
ficient to derive information about the weights of the joint network [37]. There
is an important distinction between ensuring that the computation is private as
opposed to the results being something that the two parties are willing for their
partner to know.

On the other hand some of the input data may be easily observable by both
parties in any case. For instance, in the shortest-path example when the routing
is implemented we could simply measure it. Hence leakage of this information
is inconsequential. Given these two features, we do not concern ourselves with
strict privacy-preservation here. Instead, we seek to minimize the leakage (by the
algorithm or solutions) of information that could not be otherwise observed by
the participants. It is no longer a formal, provable definition (as is strict privacy-
preservation) but it’s consistent with the aims of potential participants in GATE-
way.

2.3 Assumptions

Most approaches to inter-domain traffic engineering can be characterized as self-
ish (where one provider acts unilaterally to improve its ownperformance), or as
co-operative where the providers are willing to share information and co-operate
(exceptions being [31, 32]). In GATEway we aim to get the bestof both worlds.
Note, we may still assume that the providers are selfish, but not in quite the same
sense meant elsewhere. They will seek to maximize their own gains. However, in
the approach we propose, we change the outcome of problems such as the Pris-
oner’s Dilemma by introducing a type of trust. If the prisoners can trust each
other, then they can achieve the global optimum. Note that both are still acting
selfishly, but given the additional information, the correct selfish choice is also the
global optimum.

The model we assume for network operators is sometimes called ”semi-honest”.
It assumes that the providers are not malicious, i.e. they will not deliberately aim
to cause damage other network operators, without any positive gain for them-
selves. They will not act like a “Dog in the Manger” (Aesop). Such participants
are sometimes called “honest but curious”, because they mayseek to find out in-
formation, and exploit this information to their own benefit(and possibly to the
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detriment of other operators). This is a fair assumption because given BGP’s cur-
rent security limitations, the current Internet relies on honest participants.

2.4 GAs

The concept of a Genetic Algorithm (GA) (see [38] and the vastnumber of publi-
cation since) is based on the metaphor of Darwinian evolution — survival of the
fittest. The idea, in brief, is to create a population of solutions to a problem, and
then let them reproduce and evolve such that we tend to keep better solutions to
the problem.

One key advantage of a GA is that the fitness need not be specified in closed
form. For instance, GAs are often used in optimizing strategies for games where
the fitness is determined by competition between the membersof a population.
This advantage is key in our application because it allows the parties involved in
the computation to share only limited information about fitnesses, rather than the
details of each others networks.

GAs may have the disadvantage that of being slow. Algorithmsthat are care-
fully tuned to the application in question often perform faster than GAs, particu-
larly where large parameter spaces must be explored. However, the GA approach
we develop has broadly similar performance to [6].

We extend the use of biological metaphors in GATEway to the use of the term
symbiosis. In biology, symbiosis (sometimes mutualism) refers to twodifferent
organisms that form a mutually beneficial union. A classicalexample occurs in
coral reefs [39]. Coral polyps are a small colonial organismthat build large endo-
skeletal reefs out of calcium carbonate. However, they get the majority of their
food supply from photo-synthetic algae (zooxanthellae) which reside inside them,
and incidentally provide them with their attractive coloration. The algae gain a
safe home, while the coral polyps gain a food supply – both parties benefit from
the interaction. Typically such organisms co-evolve to this state, i.e. both evolve
together jointly (ancient corals did not exhibit this relationship). Co-evolution
is not restricted to symbiotic relationships — it can also occur for competitors
for instance — but the key is that the two organisms don’t needto share genetic
material to perform such a co-evolution. We exploit this in GATEway.
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Table 2: The Rocketfuel networks used in this study, listed by Autonomous Sys-
tem Number (ASN).

ASN Name PoPs (degree≥ 2) links
1 Genuity 24 74

701 UUNet 48 368
1239 Sprint 33 130
2914 Verio 47 176
3356 Level 3 46 536
3561 Cable & Wireless 59 592
7018 AT&T 35 136

3 Evaluation Methodology

3.1 Test networks

We have tested GATEway on two sets of topology data. Random networks, and
Rocketfuel networks. While we also use random networks to validate GATEway
these tests are omitted, because they are consistent with and add little to the find-
ings on more realistic topologies.

The Rocketfuel topologies [37] consist of a large number of networks and
their peering links mapped primarily using traceroutes. The network maps pro-
duced are not perfect, however, they represent the best current maps showing both
the intra-domain and inter-domain topologies of a significant number of large net-
works, and we avoid some of the problems in these network mapsby considering
the networks at the Points-of-Presence (PoP) level. We concentrate on a group of
tier-1 networks, based primarily in North America (though some have significant
components in Europe, Asia and the Pacific). We choose these because they all
peer with each other with multiple physical connections. Inaddition, these net-
works are the largest, and thus provide the best test of the scalability of GATEway.
The result is that we consider 7 networks, which each interconnect resulting in 21
possible pairs on which to trial the method. Additionally, there is little point in
trying to optimize routing for degree one nodes (there is only one link they can
use), and so we eliminate such nodes from the networks under consideration. The
networks used are shown in Table 2, along with parameters such as the number of
links and PoPs, which form the nodes in the graph.

The Rocketfuel data do not contain link bandwidths, and so inthe absence
of this information, we shall use the simplest possible assumption of equal band-
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width links (as in [27]). One exception to this policy is thatwe will investigate the
impact of varying the peering link capacities because theselinks are often consid-
erably different from backbone links in a number of respects, as a result of being
created through negotiations between multiple parties.

3.2 Traffic generation

The units of traffic we shall manipulate will beflows. A flow represents the traffic
between some source and destination during some time interval. We shall ignore
time dependence here for simplicity, though some methods ofoptimization have
been shown to be applicable to solving temporal problems [9,15], and these meth-
ods could be easily generalized to apply here. Sources and destinations of traffic
in IP networks are groups of IP addresses, often with a commonprefix. Note
though, that the groupings we use here are arbitrarily decided by the network op-
erators, i.e. they do not have to correspond to a particular prefix, customer, router,
or other logical structure in the network. The only constraint is that we will not
divide flows when routing them, other than across intra-domain MECPs.

For simplicity, we shall use flows aggregated to the level of traffic between
PoP pairs. Note that this is not a requirement for the method.In general an opera-
tor might wish to conceal the addresses allocated to particular PoPs, or simply the
number of PoPs in the network. Hence, they could use arbitrarily de-aggregated
prefixes, (for instance break the ISP’s address space into /24’s), or they could ag-
gregate address space allocated to routers. The choice depends on the balance
between complexity and the level of optimization required (finer granularity re-
quires more computation, but perhaps allows a greater degree of optimization).

We need to synthesize traffic matrices for our simulations, and so we extend
the simple from [40]. We generate the traffic demand matrix between nodes using
a gravity model with randomly chosen local traffic vectors. That is, we generate
independent (mean one) exponential random variables

Xk
i,m = the traffic at PoPi in networkm in directionk,

wherek ∈ {in, out}. The demand matrix elements giving the traffic fromi to
j in networksm andn areDm,n(i, j) = X

(in)
i,m X

(out)
j,n . Although this method is

extremely simple, it was shown in [40] to match real traffic-matrix statistics well.
Note that the mean of the exponential random variables is setto one because this
is a scale parameter, and as such controls the total traffic. As we will see below,
we report relative performance metrics, so that the total traffic volume is not a key
parameter.
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3.3 Performance metrics

We evaluate the performance by measuring maximum utilizations. However, the
maximum utilization on its own may reveal only the size of thetraffic, which
is being generated via a randomization process. In order to create a basis for fair
comparisons we will output the performance (the maximum utilization) relative to
themeasured routingin the Rocketfuel data. Performance results are reported as
a percentage showing the maximum utilization of a techniquerelative to the max-
imum utilization of the same traffic matrix given the measured routing. Smaller
values indicate better performance. In some places we report the distribution of
these relative performance values, in others, the average over some set of results.

4 Weight Optimization using
Genetic Algorithms

The problem of intra-domain traffic engineering can be expressed thus: find the
network routing parameters that balances loads on the existing links in a “bene-
ficial” way. There is a very simple approach to solving the intra-domain traffic
engineering problem, namely by using the shortest-path routing with a set of op-
timized link weights. This has the advantage of being easilyimplemented using
current IGPs.

We call this approach theshortest-path link-weight optimization problemand
it has been extensively studied [4–12, 15]. Despite the apparent limitation of
shortest-path routing, the method has been shown (for realistic networks) to per-
form almost as well as the most general approaches to routingavailable, and to
have many other advantages (see Section 2.1 for more details).

Take a network described by a graphG = (N , E), whereN is the set of nodes
andE is the edges of the graph. We denote the number of nodes in the graph byN
and the number of edges byE. We seek to choose a functionw : E → IR+, giving
the link weights of each link, such that when we solve the All-Paths Shortest Path
(APSP) problem, the solution minimizes the maximum utilization of the links
in the network. We use the notationwe, ce, andfe to denote linke’s weight,
capacity, and load, and the link utilization is defined to beue = fe/ce. Given a set
of link weights, the APSP routing is the routing that minimizes for alli, j ∈ N
the distancesdij =

∑

e∈pij
we between nodesi andj, wherepij is the set of links

along the path chosen betweeni andj.
The problem of finding an optimal weight setting is NP hard [6], and so we
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must find heuristic approaches to the solution of the problem. Several proposed
heuristic are based on GAs [7, 8, 11]. We use a slightly different GA here in or-
der to make it easier to generalize to the joint TE problem. The chromosome for
each member of the population is a vector containingwe for each edge. We re-
strict these elements to be represented byK bits, restricting the range of values to
we ∈ [0, 1, . . . , 2K − 1]. The GA algorithm is then:

1. initialization: create (randomly) an initial set ofN
solutions called the population,P = {xi}

2. while not finished
a. evaluate fitness:f(xi) of eachxi ∈ P
b. generate a new population:the offspring

i. selection:select two parents from the population based on fitness.
ii. crossover:combine the parents genes to form offspring.
iii. mutation: with a probabilityq mutate each gene.

c. replace old population with offspring.

However, in designing a GA there is a great deal of flexibilityin each of the
mechanisms listed here. We take the approach here of using simple techniques
with the aim of demonstrating the concept rather than providing the best possible
optimization algorithm:
1. Crossover:We use a single (random) point crossover.

2. Mutation: We perform mutation gene by gene independently, with some
small probabilityq.

3. Selection:Selection is determined from the fitness functionf(·) based on the
maximum utilization of a given routingf(xi) = 1/max e∈E ue, andRoulette
Wheel Selection, i.e., given a set of solutions{xi}, we select a member of the
population with probabilitypi = f(xi)/

∑

i∈P f(xi).

4. Termination criteria: We terminate the algorithm after a fixed numberG of
generations.
In addition, there are many tweaks one can apply to GAs to improve perfor-

mance. The only one we use here iselitism, i.e. the retention of the best member
of the population during each generation with no crossover or mutation. This
results in a non-increasing maximum fitness for each generation (a property not
guaranteed otherwise).

We use themeasured routingas an initial value, seeded into the population.
This initial value does not have quite the same importance asin many other opti-
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mization techniques, because it replaces only one of the initial population. Note
we confine our weight values to a smaller range of integers than the Rocketfuel
data, so our initial solution may have different routing from the measured routing,
and hence our results will not all start at 100% performance.

4.1 Validation of the GA approach

We tested the above approach on a range of simulated networksin order to choose
reasonable parameter settings (results omitted because ofspace restrictions). Our
main parameters are the probability of mutationq = 0.01, the population size
P = 50, the number of bits to use in representation of a weightK = 4, and
2 elite solutions were retained. We compared our results to those of Fortz and
Thorup (FaT) using their code, performingG = 10000 iterations for both al-
gorithms. Figure 1 (a) shows the performance of our approachand FaT as de-
fined in Section 3.3 by the maximum utilization of the approach relative to the
maximum utilization for the measured routing on the Rocketfuel networks. Both
approaches produce similar improvements (though FaT performs 2% better over-
all). Figure 1 (b) shows the computation times. The GA times are better by
27% on average. Although these computation times are not insignificant in some
cases, weight optimization techniques have a number of advantages. For instance,
Roughanet al. [15] showed that one could get a large part of the improvementof
weight optimization using a much smaller number of iterations, thereby creating
a potentially favorable tradeoff between time and performance — we demonstrate
the same phenomena in Section 5.3.1. Furthermore, [15] alsoshowed that weight
optimization could be performed to create a set of weights that were robust over a
period of at least 24 hours (taking into account prediction errors, and daily varia-
tions). Hence, significant computation times can be amortized over such periods.

In some cases we observe that the performance of both algorithms was some-
what limited. For instance, in Figure 1, the performance improvement for ASN
7018 was only around 70%. In this particular case we investigated the reason,
which was that there were two components of the graph that were poorly con-
nected. In particular, three PoPs in Florida were connectedto the rest of the North
American nodes via a single pair of links. Given only two links, the opportuni-
ties for load balancing are somewhat limited. In the real network this would be
reflected in the fact that the two links in questions would either have increased
capacity, or the poorly connected network segment would have little traffic. This
appears to be a relatively common occurrence in the Rocketfuel topologies, and
hence we wished to assess how much our results were biased by such features. To
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do so, we excise the 3 Florida nodes (and 8 edges) from Rocketfuel ASN 7018,
and perform the optimization on this new network. The results are shown in Fig-
ure 1 under the heading ASN 7018a. Clearly a great improvement was obtained
for the reduced network. In the remaining work in this paper we will continue
to work with ASN 7018a, the Rocketfuel topology without the Florida nodes, but
we leave the other topologies untouched, thus providing some contrast as to the
impact of this issue.
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Figure 1: Simple weight optimization using the GA forG = 10000, and Fortz
and Thorup (FaT) also using 10000 iterations. The results show the mean relative
performance for 30 random simulations, and compute times.

4.2 Computational complexity

The algorithm proceeds in a number of iterationsG, with population sizeP , hence
its computational cost is proportional toPG, but the critical factor in the computa-
tional cost is the cost of evaluating the fitness function, which requires the solution
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to the APSP problem. We use a simple implementation of the Floyd-Warshall al-
gorithm to perform this step (the algorithm hasO(N3) computational complexity)
and Figure 8 confirms cubic complexity. The all-paths shortest path problem can
be solved more efficiently using better implementations of Dijkstra’s algorithm
but other elements GATEway will requireO(N3) computations and so we do not
try to improve the APSP algorithm here.

5 Symbiotic Optimization

The previous section considered optimization over only a single network, and sim-
ilar results have been described elsewhere. We now describethe generalization of
this approach to a pair of networks joined together at a set ofpeeringlinks. The
GA algorithm is extended to allow joint evolution of two “symbiotic” populations
of solutions, one for each ISP. As in biological symbiosis the participants don’t
have to share all their genetic material. However, there is some information leak-
age in our initial approach, and we consider how to limit it inSection 6.

5.1 The problem

The problem we wish to solve here is the problem of optimizingthe routing of
two connected networks. In principle this is no more complexthan optimizing one
large network (comprised of the two inter-connected networks). However, busi-
ness constraints restrict the type of routing allowed. For instance, transit routing
is not allowed between peers. One peer cannot use another network’s backbone to
transit its traffic across the country using its own network only at the end points.
Hence the simple generalization of shortest-path routing to the joint network cre-
ated from inter-connecting the two peers will create unacceptable solutions.

Furthermore, as noted earlier, we wish to limit the exchangeof information
between the two peers. The joint shortest-path solution would require each net-
work to share its topology, and traffic in detail. More precisely, take two networks
G1 = (N1, E1), andG2 = (N2, E2), which are inter-connected by a set of peering
linksQ, where forq ∈ Q we haveq = (n1, n2) wheren1 ∈ N1 andn2 ∈ N2. We
can create a joint networkG = (N , E), whereN = N1∪N2, andE = E1∪E2∪Q.
We shall use the solution to the shortest-path (SP) link-weight optimization prob-
lem on a joint network as a basis of comparison, because we have substantial
evidence [6, 9, 15] that it will be close to the best possible routing solution. To be
clear, in this solution (which we calljoint SP), the peering links have no special
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role, and we do not attempt to prevent transit traffic. Hence the solution is an un-
realizable idealization, but we use it as a loose lower boundon performance, for
comparison.

At the other end of the spectrum, we will also compare resultswith selfish
routing, where each provider optimizes its own routing withinformation it can
measure itself. Thisselfishsolution will be poor because each provider cannot
anticipate the changes the other will make to its inbound traffic. On the other
hand, GATEway

1. can be computed with limited sharing of information;

2. prevents transit; and

3. is reasonably simple to implement with standard routing protocols (e.g. shortest-
path IGPs and BGP).

We do this using the mechanism ofexit point pinning. Given a traffic flow from
network 1 to 2, we would choose a particular exit point, and pin this flow so that it
uses that exit point. There are a number of mechanism one could use to implement
such a pinning (see Section 5.5), and the pinning could be performed at a variety of
granularities. As we have previously discussed, we shall consider PoP level flows.
We also simplify by pinning based solely on source or destination, not both. In the
examples we show source based routing, as it is slightly simpler to explain, though
destination based routing (which is an equivalent, though transposed problem)
would be easier to implement. For example, traffic from nodei in network 1,
to nodej in network 2, would be pinned to peering linkq(i) ∈ Q (note we can
specify a peering link by its end pointsq = (k, m), k, m ∈ N or its index in the
set, e.g.q = j ∈ [1, . . . , Q]). The exit point chosen for a given traffic flow is not
necessarily the closest to the point of origin, so this is nothot-potato routing, but
we do not need the full flexibility of a scheme like TIE [17].

Before we can continue, we must also briefly discuss the difference between
Origin-Destination (OD) demand matrices, and Ingress-Egress (IE) traffic matri-
ces. As noted earlier we will simulate using an OD demand matrix generated via
a gravity model, which specifies the traffic from origin to destination in the joint
networkG, and so is aN × N matrix, whereN = N1 + N2 andNi = |Ni| is the
number of nodes in networki. Denote the OD matrix byD where its elements
D(i, j) are the traffic from origini to destinationj, and we can writeD in the
form

D =

(

D1,1 D1,2

D2,1 D2,2

)

,

whereDm,n is the matrix whose elementsDm,n(i, j) give the traffic from nodei
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to j in networksm andn.
The IE traffic matrix describes the traffic matrix as seen internally on a single

one of the networks, which is not the same as the demands (see [41] for detailed
explanations of this phenomena). For instance, for network1, the observed traffic
matrix will not beD1,1. Using pinning, we can easily construct an IE traffic matrix
T (k) for networkk from the OD matrix. We simply take, for example

T (1)(i, j) = D1,1(i, j) +
N2
∑

m=1

D1,2(i, m)I(q(i) = (j, ∗))

+
N2
∑

m=1

D2,1(m, j)I(q(m) = (∗, i)),

for all nodesi, j ∈ N1, where∗ is a wildcard, andI(·) denotes an indicator
function, i.e.I(A) = 1 if A is true, and 0 otherwise. The computation forT (2) is
similar. Notice that the matricesT (i) may not follow a gravity model even where
D does. ComputingT (1) takesO(N3

1 + N2
1 N2) operations, and so the resulting

computation is of similar order to the shortest-paths computation. The demands
D1,2 andD2,1 are measurable by either party using flow collection. The internal
demandsDi,i do not have to be shared.

In addition, we need to be able to compute the traffic on each peering link q,
which we can do by

r
(1,2)
j =

N1
∑

k=1

N2
∑

m=1

D1,2(k, m)I(q(k) = j),

r
(2,1)
j =

N2
∑

k=1

N1
∑

m=1

D2,1(k, m)I(q(k) = j),

wherer
(1,2) andr

(2,1) are vectors of the loads on peering links. Both providers
know the capacity of peering links.

Network operatori can now compute the shortest paths via the APSP, and
hence compute the internal links loads on networkGi using only local information:
the IE traffic matrices, a set of exit points, and link weightsonEi.

5.2 GA solution

Consider the problem above. We wish to find a solution that limits the sharing
of information to the necessary minimum, and yet allows optimization to take
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place. We shall apply the metaphor ofsymbiosishere, allowing each network to
co-evolve without sharing all their genetic material.

We start by specifying the chromosomes — there will be four. For each net-
work we use one chromosome to describe its weights, and another to describe
the pinning positions. We separate the two groups of information as we may
wish to perform cross-over and mutation in different ways for each type of gene.
More specifically, each member of the population will be described by the vec-
torswi, andqi, giving the links weights, and pinned exit points, respectively, for
networksi = 1, 2. As before, the weights are restricted to[1, . . . , 2K − 1] and
qi ∈ [1, . . . , Q], where there areQ peering links. Network operatori holdswi and
qi. The values of the pinnings are shared, but the network weights are not, thereby
keeping secret each networks’ internal topology.

Each network uses the traffic matrices, pinnings, and its owninternal weights
to compute its own internal link utilization, and the peering link utilization. The
information necessary to compute the joint fitness function(the maximum uti-
lizations) is shared, so that each network knows the joint fitness of all members
of the population. From this each performs selection, sharing the seeds used in
pseudo-random number generation such that they each selectthe same population
members. The two then perform cross-over, and mutation independently (only on
the chromosomes they hold).

5.3 Evaluation

5.3.1 Performance

We test the performance of techniques by simulating using the methodology de-
scribed in Section 3. That is, we choose a pair of networks whose topologies and
interconnects are given by the Rocketfuel data, assume linkcapacities are equal,
and we generate a random (joint) traffic matrix describing traffic inside each net-
work, and between the two. We perform 10 realizations of eachof the 21 possible
pairs of network leading to a total of 210 simulations. For each simulation we
compute performance, defined in Section 3.3 to be the maximumutilization of a
technique relative to the maximum utilization of the measured Rocketfuel routing
(smaller percentages are preferred).

The Cumulative Distribution Function (CDF) of the performance of each tech-
nique is shown in Figure 2. They-axis show the proportion of tests with perfor-
mance below the specified performance, so curves further to the left indicate better
performance and there is no averaging over simulations in this figure. Note that
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we shall defer discussion of the “symbiotic 2” algorithm until Section 6, where
we present an alternative algorithm that improves privacy (at a cost in terms of
performance).

Unsurprisingly, the joint SP (Shortest-Paths) algorithm has the best perfor-
mance. It is noteworthy that its performance ranges between20 and 100% with
an average of 46.6% (Table 1 summarizes the average performance). Summariz-
ing, joint SP routing always improves performance in comparison to the measured
routing on these networks, and the improvement ranges from being fairly small,
to a factor of five, with the average being around a factor of 2.However, as earlier
noted, the joint SP solution is unrealizable.

Given that this routing is unrealizable, and that the networks in question were
not specifically designed to carry the simulated traffic, it is natural to ask how
important the above improvement is. We can see this by considering how well we
do using selfish routing, which should in principle account for the simulated traf-
fic. The performance of selfish routing ranges to values greater than 120% (values
over 100% indicate that we are actually worse off with this routing scheme). In
about one third of cases, providers are worse off if they act selfishly. This result
contrasts strongly with that of joint SP routing, and so we use the joint solution as
a benchmark against which to compare our approach.

The performance of the symbiotic approach is close to that ofthe joint SP
algorithm. Its average performance relative to measured routing is 51.5%, so
our method provides roughly a factor of two performance improvement, but it is
realizable even with the privacy constraint.

Figure 3 shows the performance after each iteration for a single simulation of a
specific network pair. Most importantly we learn from this graph that the majority
of improvements in performance occur early on in the optimization. Hence, one
could find useful tradeoffs between performance and speed. Graphs for other
provider pairs, and other simulated traffic matrices also support this view.

Additionally, we considered how various characteristics of the networks in-
fluenced performance. Figure 4, shows that the performance was correlated with
the network size. We speculate that this is because larger networks provide more
opportunities for route diversity, which may be beneficial for shortest-path routing
optimization (we see a similar phenomena in Section 5.4 for larger networks).

5.3.2 Peering vs internal links

In the work above, we have deliberately kept things simple inhaving all link
capacities equal. However, anecdotally, peering links areoften supposed to be
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Figure 2: The CDFs showing the performance of the TE techniques with respect
to the measured routing withG = 5000.
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Figure 3: TE across the Rocketfuel AS 1239 and 7018.
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Figure 4: Performance of the symbiotic algorithm as a function of the joint net-
work size.

smaller than internal links. Peering links are built through negotiation between
competitors. Neither party wishes to pay for the links, and so they are sometimes
allowed to reach a state of congestion before any action is taken to upgrade the
links. In comparison, anecdotal evidence suggests that most major backbones are
relatively lightly utilized, and are likely to remain so under due to the requirements
for failover capacity.

Figure 5 shows the relative performance of the algorithm as peering link ca-
pacity varies with respect to backbone capacity. The figure shows the maximum
link utilization relative to the measured routing for the Rocketfuel networks 1239,
and 7018 averaged over 10 simulations. The figure also shows the maximum
peering link, and internal link utilizations. For normalized peering link capacities
below about 0.4 the performance of the algorithm is dominated by the peering link
performance, i.e. the maximum link load occurs on a peering link. Under such
circumstances, the relative performance is dominated by a bin-packing problem,
which unsurprisingly can be solved significantly better than the measured routing.
On the other hand, as the peering capacity increases, the network performance
becomes dominated by the internal link capacities.

Note that as the normalized peering capacity becomes large,the performance
approaches the individual performance of network 1239 (shown in Figure 1) in-
dicating that this network is the bottleneck in this scenario. However, despite the
dominance of this component of the network, other link traffics are being reason-
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ably balanced (as shown by the comparisons between the purely peering, and in-
ternal performance shown in the figure). This might be even better accomplished
if we used a less simple performance metric such as considered below
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Figure 5: Maximum utilizations of the network, internal links, and peering links
as the normalized peering capacity varies.

5.3.3 Alternative metrics

The algorithm above has been shown to find a good min-max link utilization solu-
tion to the routing problem. However, network operators maynot share this goal;
they may wish to optimize other objective functions. A key advantage of GAs is
their flexibility with respect to objective functions. We have tested our approach
against the metrics drawn from [6, 9]. It has the advantage that it incorporates
congestion information from the whole network, not just themaximally utilized
link. The metric of [6, 9] is given by a sum

∑

e C(ue), whereC(0) = 0 andC is
a piecewise-linear, increasing function of utilization (with increasing derivative).
We then use fitnessf(u) = 1/

∑

e C(ue).
Figure 6 clearly shows that the new metric is optimized (in fact given the log

y-axis the improvement is much faster than for the max-utilization). The figure
shows not just the total congestion function, but also the function for each individ-
ual network, for a particular pair of Rocketfuel networks. The reason for showing
the individual networks results is to show that gains are made for both networks,
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and that the gains do not depend on the ordering of the two (i.e. the maximum and
minimum congestion functions are both being optimized simultaneously). Link
utilization results are omitted but support the same view.
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Figure 6: Performance when minimizing
∑

e C(ue).

5.3.4 Robustness

TE is typically applied predictively, i.e. one measures thenetwork, determines the
routing to be used, and then this is applied in some future time interval where the
traffic may not be identical to that measured. In addition, measurements them-
selves may contain errors, for instance where sampling or inference is used in
data collection. Hence, robustness to measurement or prediction noise is a highly
desirable characteristic of any TE algorithm. One of the advantages of optimal
weight assignment is robustness to noise [5,13,15].

We test the robustness of GATEway by determining the optimal(or near op-
timal) routing using the symbiotic GA, but then measuring its performance on a
network where a different traffic matrix is applied. For eachinitial OD demand
matrix D(i, j), we measure performance on a traffic matrix with multiplicative
noise, i.e.Derr(i, j) = D(i, j) [1 + σN(i, j)] , whereN(i, j) is an independent
standard normal random variable, for eachi and j, where we varyσ such that
the standard deviation of the noise relative to the initial traffic varies from 0 to
20%. For each of the 10 initial traffic matrices we repeat thisexperiment 10
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Figure 7: Robustness results for Rocketfuel networks 1239 and 7018, averaged
over 100 simulations.

times, adding different noise each time, for a total of 100 experiments. Figure 7
shows the results for the Rocketfuel networks 1239 and 7018.The figure shows
both the average performance, and the worst case performance (max). Even the
worst performance over the set of 100 experiments shows great insensitivity to
the errors. Similar results are observed for other values ofpeering capacity. It
may seem surprising that the results are quite so insensitive to the input traffic, but
this is roughly consistent with the results of [5,13,15], which showed remarkable
insensitivity to noise in the simple weight assignment problem.

5.3.5 Computational Complexity

The issues surrounding computational complexity of this algorithm are essentially
the same as those for the simple intra-domain problem, resulting in O(N3) com-
plexity. Note though that the size of the network on which we evaluate shortest
paths is the individual networks, not the joint network, andso the computational
time isO(N3

1 + N3
2 ) which is much faster than theO((N1 + N2)

3) computational
time for the joint network. Given two equal sized networks the reduction in com-
putation time is a factor of 4. Figure 8 confirms the algorithms’ complexities,
showing computation times and fitted cubic curves.
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Figure 8: The computation times of the algorithm with respect to number of nodes
for the Rocketfuel topologies (G = 5000), and fitted cubic polynomials.

5.3.6 Communications Cost

The implementation of this algorithm as a distributed algorithm requires a transfer
of information between the two peers. The information to be transferred consists
of:
1. The pinning points for each member of the population, for each generation.

2. The information needed to compute the fitness function (inour case, the max-
imum link utilizations).

The information require to compute fitnesses is small compared to the pinning
information. The pinning information requires vectors of sizeNi to be transmitted
for each networki, for each member of the population, and at each generation.
Hence the communication volume isO(NmaxPG). Note also that each value to
be transmitted is an integer in the range[1, . . . , Q], whereQ is typically small
(< 16), and can therefore be represented with around 4 bits without compression.
However, after an initial random selection, the pinning vectors are not random,
but are the result of a highly non-random process of evolution, and so are quit
compressible. We tested this by writing the population of pinning vectors for each
network to a file (for the example considered above with the two networks ASN
7018 and 1239), and usinggzip to compress the files. Figure 9 shows the results
with respect to the number of iterations (generations) of the GA. Compression
ratios of around 4:1 were achieved within 10-15 generations. Thus the pinning
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data can be communicated with around 2 bits per value. Given parameter values
used here (for instanceP = 50, Q ∼ 10, N ∼ 50), the communications cost is
< 1 kB per generation.
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Figure 9: The achieved compression ratios as a function of the number of genera-
tions of the GA (P = 50, Q = 10, N = 50).

5.3.7 Other violations of assumptions

The largest assumption in all of this work is the “honest but curious” assumption.
It is a fair assumption — the current Internet relies on this as well, given the rela-
tively insecure nature of inter-domain routing at present.However, it is interesting
to consider what happens if this assumption is violated. Imagine that one of the
ISPs either lies about, or is mistaken in the data it providesto the algorithm, or
chooses not to follow the routing determined by the algorithm. It is a simple mat-
ter then for the other ISP to measure the traffic across its peering links using flow
capture, and from this determine that a problem has occurred. If the problem re-
duces their performance, then they may either renegotiate anew routing (via our
algorithm or otherwise), or go back to their old routing, so they are no worse off
than before commencing the use of this algorithm. The other ISP may possibly be
better off in the short run through its dishonest behavior, but in the long run they
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Figure 10: Performance of multi-party GA as a function of thenumber of partici-
pants, relative to performance for two participants.

are unlikely to make any more gains than they would by violating current BGP
policies.

5.4 Multiple-party optimizations

The extension of this work to more than one party is quite straight-forward. N
peers (in the sense of neighboring networks that do not allowtransit) can perform
the same type of optimization, such that each network retains the information
about its own link weights, and shares appropriate pinningswith each peer. Given
the GAs ability to cope with arbitrary fitness functions, thegeneralization is obvi-
ous. Figure 10 shows relative performance of the optimization as the number of
participants increases. Again this seems to be a result of the increased diversity of
routes in a larger network.

5.5 Implementation

The GA would use a protocol independent of the routing protocol. The optimiza-
tion only requires concrete instantiation in routing once an optimal solution has
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been determined. There are two approaches to instantiate the derived routing us-
ing standard, existing routing mechanisms. Firstly, tunnelling techniques such
as MPLS, or IP over IP encapsulation allow explicit choice ofexit points. Such
techniques have already been proposed for use in [17]. Tunnelling gives a high
degree of control both over the exit points, and the path taken by traffic, though
in GATEway the route of tunnels would be chosen using shortest-paths (only exit
points are fixed).

Alternatively, one could use BGP mechanisms to alter exit points. Mecha-
nisms such as local preference, and MEDs are used to control exit points. These
apply control across a whole network (e.g. the exit point forall source nodes
for a particular destination would be the same), which implies a destination based
pinning. We showed that such a pinning would still provide excellent gains in per-
formance. Even if BGP is used, only exit points are changed, so announcements
outside the AS are not needed, and iBGP convergence times will be much shorter
than eBGP convergence times.

At present TE is typically performed as needed, in a ratherad hocfashion.
However, with automated optimization it could be performedregularly. The time
interval at which we perform TE is a tradeoff between more precise optimization
(using a fine-time grain), and the cost (potential packet loss during routing recon-
vergence) of frequently changing network routing. As noted, we do not need to
wait for slow eBGP reconvergence, and so the impact of routing changes would be
quite small. On the other hand, shortest-path routing optimization has been shown
to work well over for traffic with daily variations [9, 15]. Soit seems reasonable
(as a starting point) that the TE should be performed once perday.

There could be a short period between the optimization and implementation
phases where the routing on the two networks not synchronized (in the sense that
the two are not both using the same optimized polices). This cannot cause route
loops as the routing protocolsare synchronized, but may result in a brief period
of suboptimal routing. The length of this period would be determined by how
quickly the agreed routing can be implemented in the respective networks. With
automation this could be accomplished in seconds to minutes, but once again note
that the only effect would be some suboptimality in routing,and we have already
shown that the shortest-path routing approach is quite insensitive to noise, and so
we should no expect serious consequences during this phase.

Furthermore, network providers often have a maintenance window (in the
early morning when traffic is light) for making network changes so that they have
minimal impact on customers. It would be desirable to schedule TE activities at
the end of this interval. As the maintenance window is chosento be during a
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period when traffic is light, some small degree of suboptimality in routing will
have negligible impact. Furthermore, most network changeshappen during the
maintenance interval, and so performing TE at the end of thisinterval allows the
network to adapt in a timely fashion to any topology changes.

6 Privacy Maximization

The above approach to joint network optimization limits information sharing, but
there is still some leakage through the pinning vectors and fitness functions. The
joint fitness calculation requires the ISPs to share maximumutilization data. This
problem is alleviated in part through the use of the utilization metric of [6,9], but
can be improved further.

One of the advantages of the GAs is that the fitness function can be arbitrarily
chosen. All we really need to know are the selection probabilities for each member
of the population of possible solutions. We have a polynomial-time algorithm for
constructing these probabilities, and therefore Yao’s twoparty protocol applies.
This is now a well researched area (for instance see some of the reference at [35]),
and so, given space limitations, we only briefly describe theapproach. There are
three steps: firstly, we must solve the APSP for each network,given its internal
weights. This can be done internally by each provider. Then these routes must be
used to compute the load on each link from the OD demands. For internal links
fe =

∑N
i,j=1 D(i, j)I(e ∈ pij). This can be directly computed wherei, j ∈ Nk,

but for i ∈ Nk andj ∈ Nm, k 6= m we need to break the indicator into two parts

I(e ∈ pij) =
∑

k

I(e ∈ pik)I(q(i) = (k, ∗))

+
∑

m

I(e ∈ pmj)I(q(i) = (∗, m)),

whereq(i) is the peering link for traffic originating at nodei. The number of bits
for D(i, j) is O(nN2) where we represent the values withn bits, while for the
indicator functions there areO(EN2 + N log Q) bits. Yao’s protocol’s communi-
cations cost is linear in the number of bits [34], and so requiresO(nN2 + EN2 +
N log Q) overhead. The above computation has to be performed for eachedge, so
given that typicallyE > n, and we can write the complexity asO(E2N2). The
third step is to compute the maximum of these values, for which a standard ver-
sion of Yao’s protocol is sufficient, and with comparably negligible overhead (as
is the overhead of computing the peering link loads). Additionally, secure opera-
tions can be composed, hiding intermediate data. Hence it ispossible to perform
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a step of the symbiotic algorithm which satisfies the definition of privacy preserv-
ing, in the sense that the two ISPs need not share (i) utilization data, (ii) pinning
data, (iii) any other details of their internal network. We call this solutionprivacy-
maxand note its performance is the same as the previous symbiotic solution. The
cost for using this approach is an increased communicationscost associated with
performing Yao’s protocol.

An alternative to strict privacy preservation via Yao’s protocol is to separate
selection into the two networks. More precisely, each network computes its own
fitness function, and each uses this to select one parent for cross-over. The two
networks share the pinning information which is needed to compute link utiliza-
tions (again Yao’s protocol could be used here to avoid this information being
shared). However, the two network use completely independent fitness functions
— the fitness functions need not even be the same, thus avoiding any need to share
this information. There is a cost in performance. The method(which we refer to
as “symbiotic 2”), does not perform as well as the simpler algorithm. The results
for this independent symbiosis are shown in Figures 2 and 3, and Table 1 summa-
rizes the performance of all methods considered here. The average performance
after 5000 generations is 68.4% as compare to 51.5% for the previous algorithm,
though still a considerable improvement on the selfish solution. The performance
reduction occurs because, although we still use elitism, each network chooses its
own elite member of the population without knowledge of the fitness function of
the other network. As a result, the chosen elite members of the population are
not necessarily elite from the point of view of the other network or a joint fitness
function. Hence performance (as measured by the joint maximum utilization) is
no longer monotonic. Figure 3 shows this non-monotonicity.The final solution
is actually worse than some of the solutions chosen along theway, but without
knowledge of the joint fitness, we have no way to know this, andchoose the better
solution.

Note that the results for “symbiotic 2” also illustrate another important point.
In these examples we usedifferent fitness functions in the two networks. The
fitness are computed independently, so this is easily incorporated.

7 Conclusions and Future work

This paper presents GATEway, a set of algorithms for joint TEbetween two net-
works who do not wish to make disclosure of information abouttheir networks.
We demonstrate a distinct advantage to combining information, but we present
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methods here that allow combination of data, without needing to share it. Such
approaches could have a significant impact on the way networkoperators interact.

There is a great deal of interesting work leading on from thispaper. Initially
we may find improvements of the GA, but the GA is highly flexible, so we an-
ticipate being able to apply modifications to solve more sophisticated problems
considered in the TE literature, for instance optimized routing that works well for
failure scenarios [18, 19]; that can find single weight settings for a range of traf-
fic matrices [9, 15]; where additional constraints are imposed; or applied to TIE
routing [17].

The approach we have proposed here for a specific problem is actually quite
general. It could be applied to other network problems, for instance inter-ISP ca-
pacity planning, and perhaps it is also possible to extend these methods outside of
the networking world. The important point is that GAs make the approach inher-
ently flexible to a range of problems where information sharing is undesirable.
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