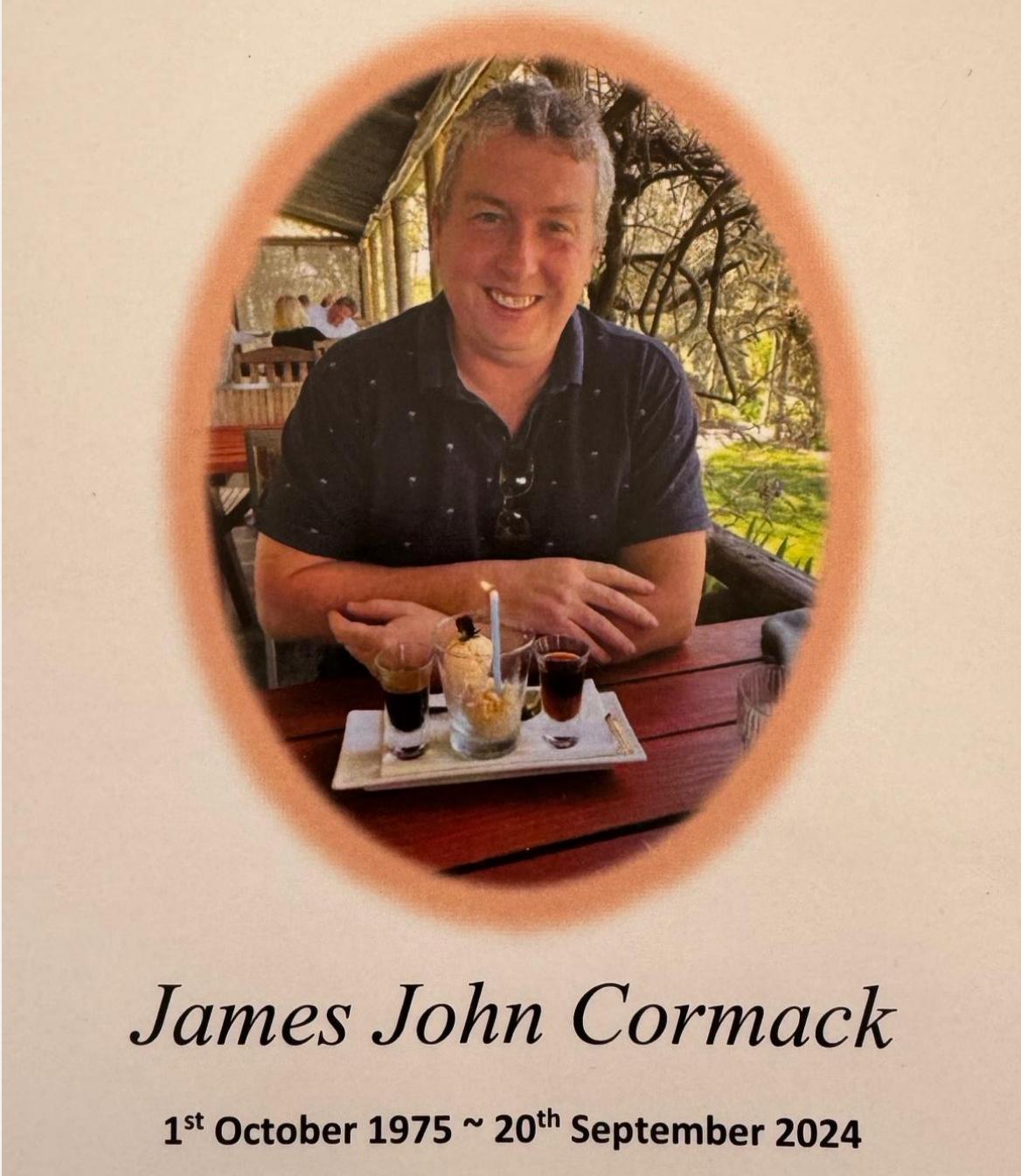


CLASSIFYING MARITIME VESSEL BEHAVIOUR FROM AIS USING STATISTICAL FEATURES

James Cormack, Matthew Roughan and Hung Nguyen

University of Adelaide

Nov, 2024



James John Cormack

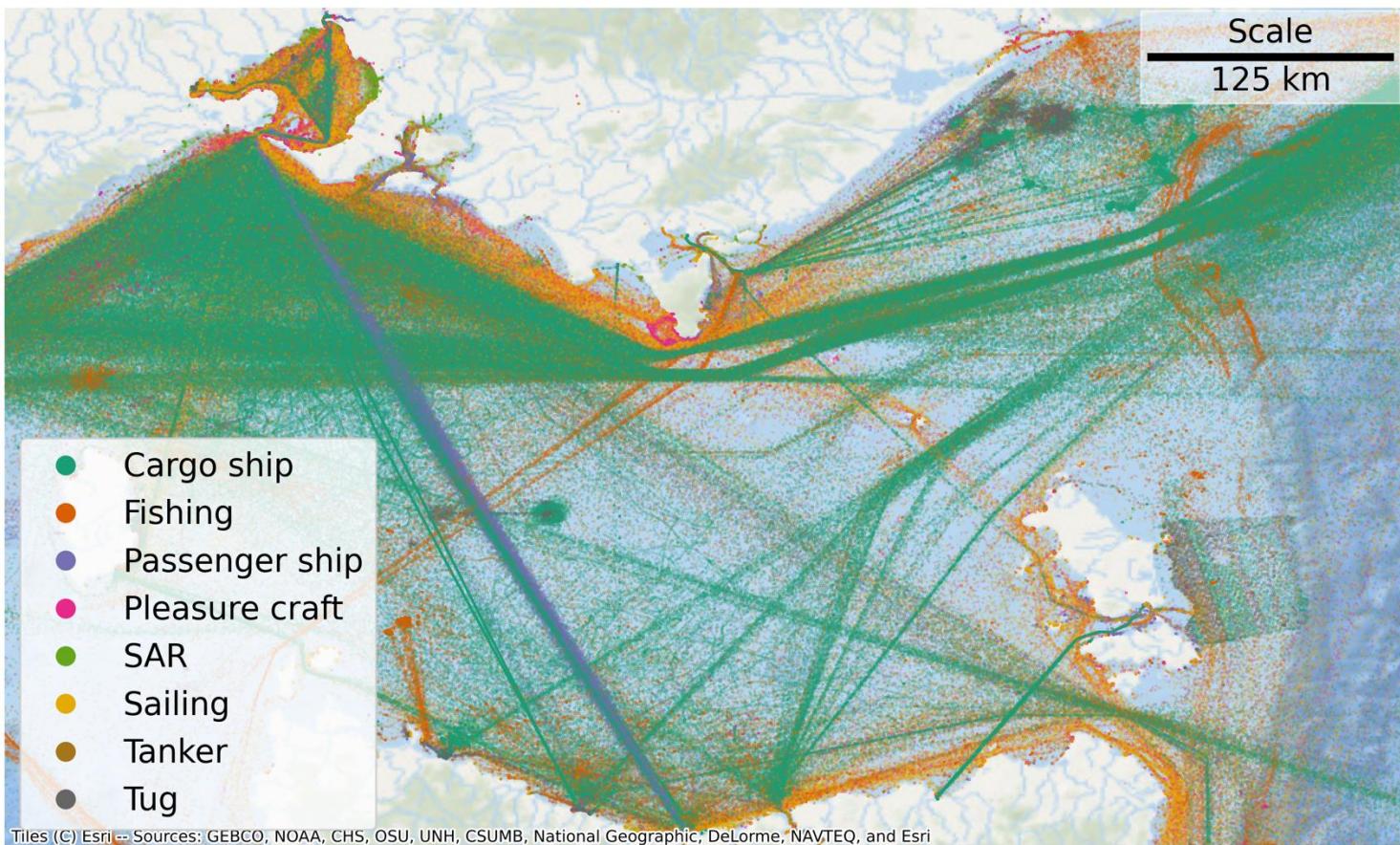
1st October 1975 ~ 20th September 2024

MARITIME BEHAVIOUR CLASSIFICATION MOTIVATION

- Early SAR (Search & Rescue) detection of ships and boats in trouble
 - Fast response is crucial to good outcomes
- Maritime policing
 - Illegal fishing
 - Illegal immigration
 - Trafficking
 - Piracy
 - Unexpected military activity

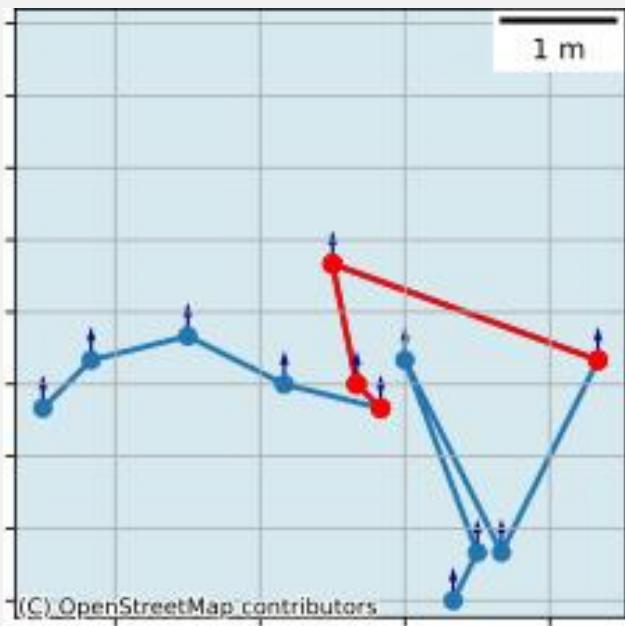
AIS DATA

- Australia
 - Large coastline (6th longest in the world)
 - Remote locations
- AIS = Automatic Identification System
 - Transceivers on ships send information at intervals
 - Information = position, course, speed, ID, name, type, ...
 - Received onshore base stations or by satellites (or other ships)
 - Primary use is collision avoidance
- AIS (publicly) available for many ships (over 300,000)
 - Required for larger ships (anything over 300 gross tonnage)
 - Required for all commercial passenger ships
 - Since 2006 possible for smaller ships including many leisure craft

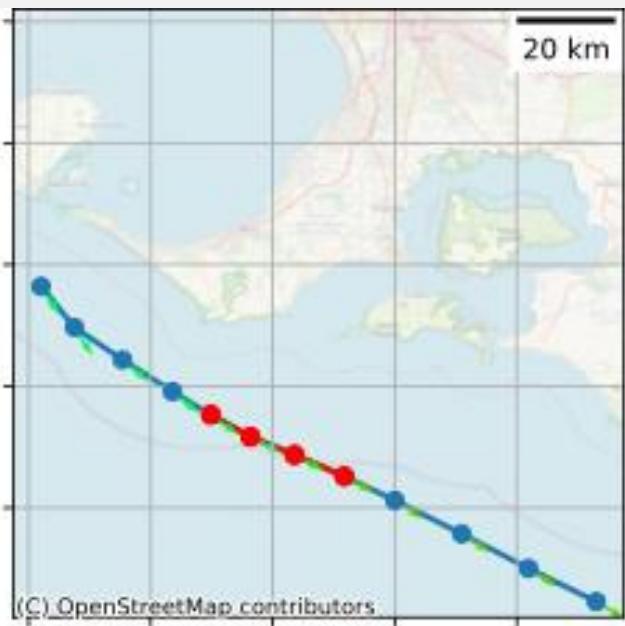


THE PROBLEM

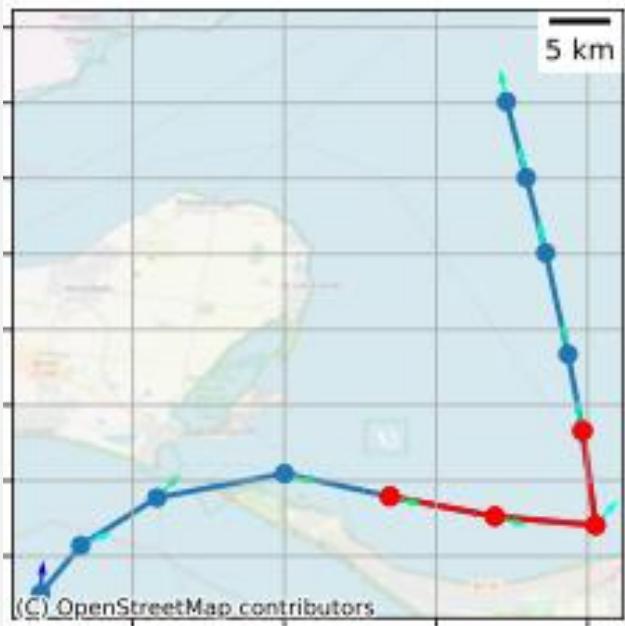
- Classify ship behaviour from AIS data
 - Short segments so that classification is timely
 - Initially classify standard behaviours: stopped, turning, straight, maneuvering
 - Towards detecting anomalous behaviours
- Challenges
 - Data is not BIG (by modern ML standards)
 - Small number of variates
 - 1000's of tracks, but that isn't massive
 - Data isn't 'nice'
 - Irregular time intervals
 - Missing data



a) Stopped

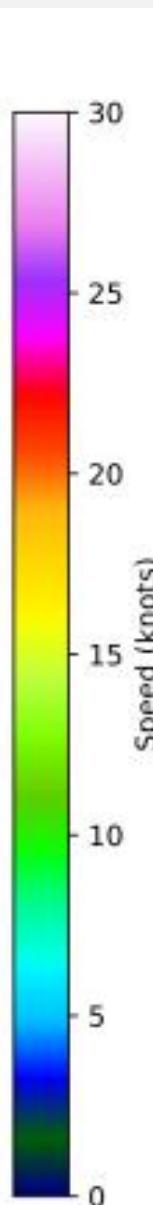


b) Straight



c) Turning

d) Manoeuvring



APPROACH

- Standard supervised Machine Learning (ML)
 - Segments of 4 AIS data points (approximately 1 hour)
 - Enhanced features created to expand the input
 - >60 features
 - ML classifier approaches:
 - Multi-layer Perception (MLP)
 - Random Forest (RF)
 - k-Nearest Neighbour (k-NN)
 - Tested different feature set/classifier combinations

DATA DETAILS

- Data from Australian Maritime Safety Authority (AMSA)
 - Publicly available, anonymized
 - Approximate 15-minute sampling interval (reduced from original in some cases)
 - Some missing data
 - Accuracy unknown, but assuming GPS origin ~10m
 - Includes different types of vessel: cargo, tanker, passenger, pleasure craft, fishing, sailing, tug, and SAR (search and rescue)
- Dataset
 - Jan 2021 – March 2023
 - Bass Strait region (-41.2 to -37.7 latitude, 143.6 to 149.3 longitude)
 - High shipping volume
 - Challenging environment

GROUND TRUTHING

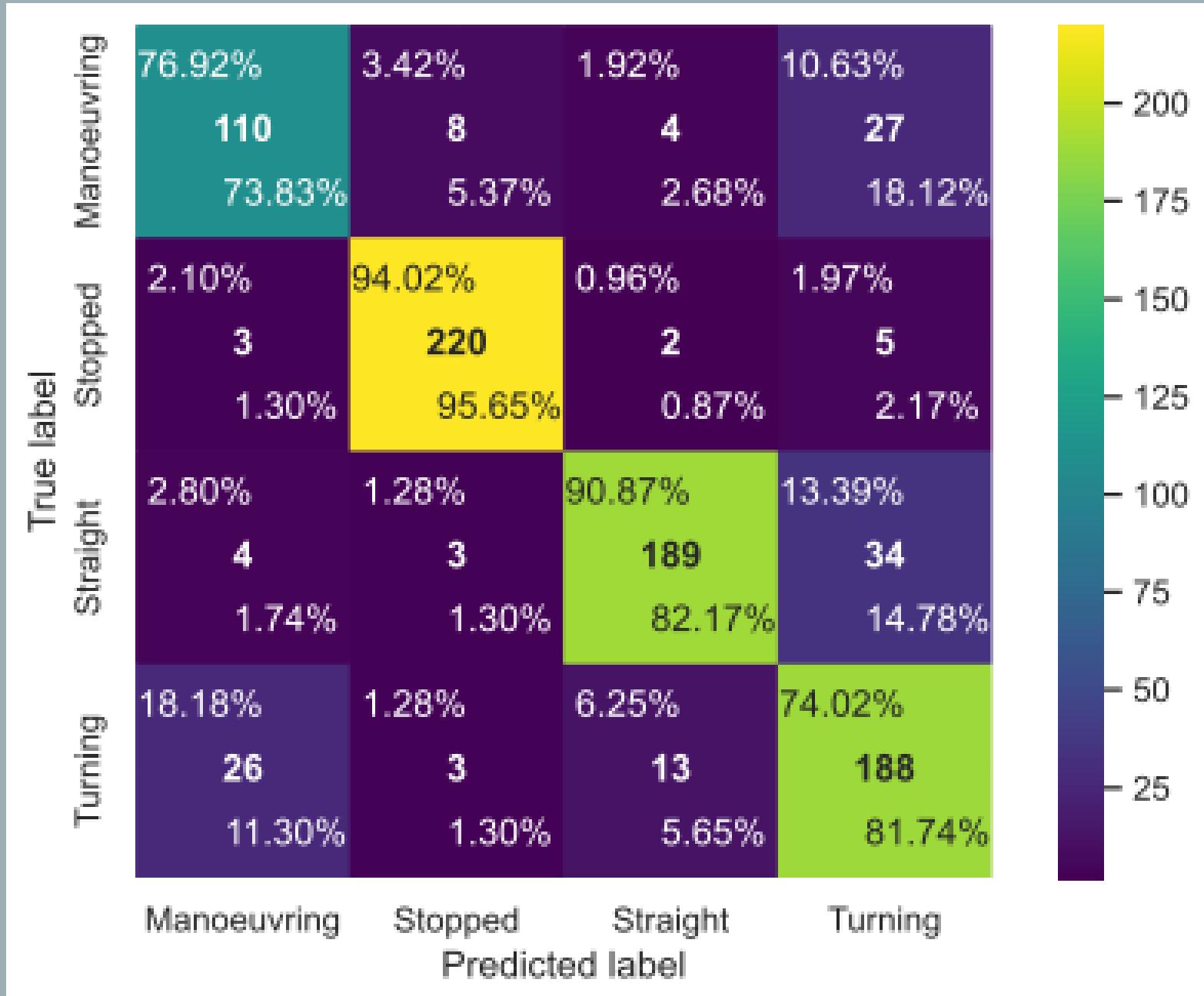
- Primary data was manually classified
 - GUI interface developed to allow track classification
 - Uses 4 key points, plus context (4 additional points on either side of the track)
 - These are not used in the ML
- Secondary classification
 - Original traces were asymmetrically distributed
 - To enhance the more limited classes, semi-automated rules were used to generate candidate tracks

Label	Samples
Turning	1151
Stopped	1151
Straight	1151
Manouevring	746

64/20/16
split

RESULTS

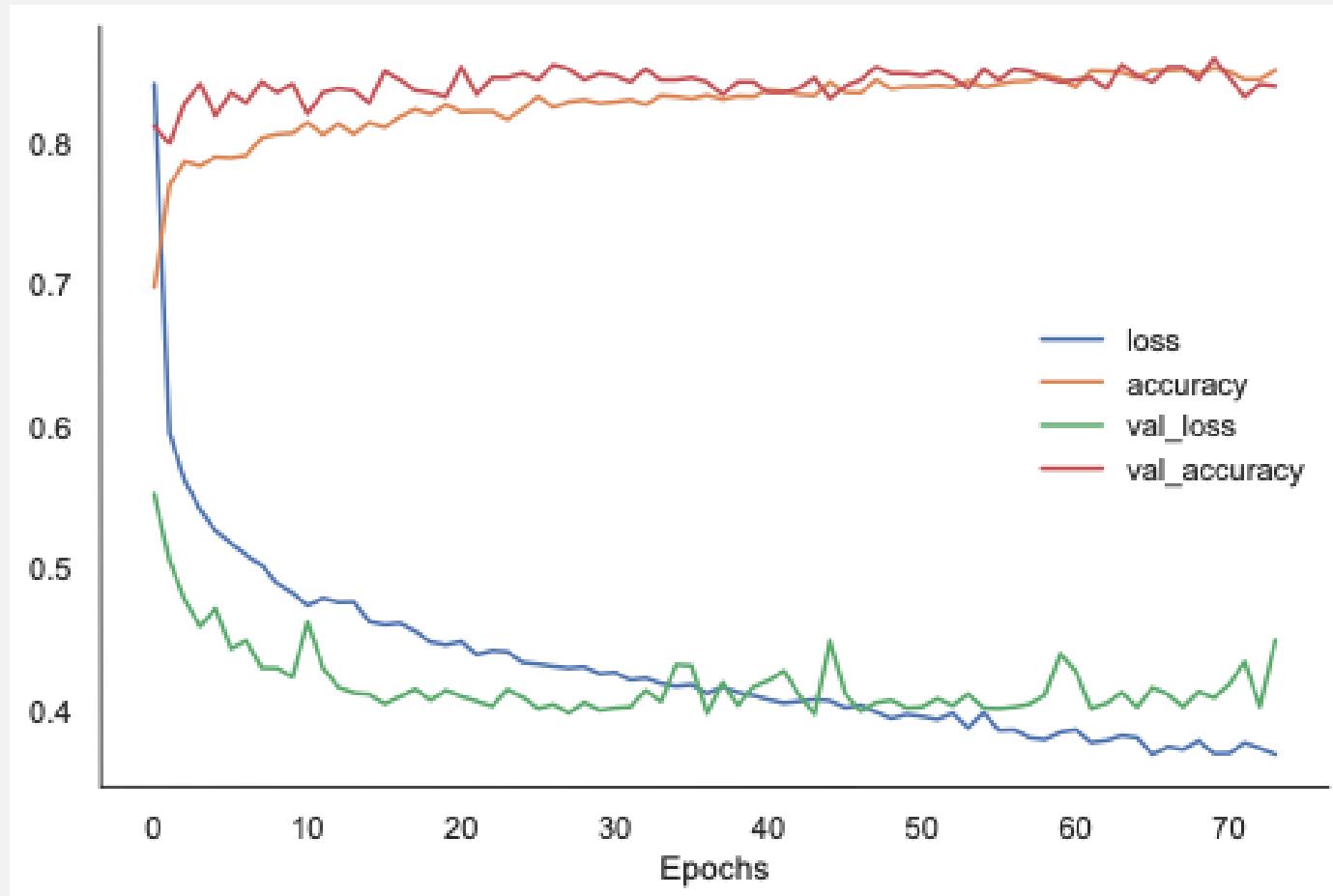
Best approach = MLP
with top-20 (Gini) features
with F1 = **83.6%**



CONCLUSION

- We can obtain high accuracy classification with very limited data
 - F1 of 83% from 4 data points
- Future
 - ML not extensively explored
 - Data could be expanded in several ways
 - Next stage is detecting anomalies

TRAINING



FEATURE EXAMPLES

- **Avg_Interval:** Average interval between all track points.
- **Pcw_Std_Course:** Standard deviation of Course over all track points.
- **Pcw_Avg_Accel:** Average acceleration over all track points.
- **Pcw_Max_Speed_Change:** Maximum change in Speed over all track points.
- **Pcw_Avg_Dist2Coast:** Average distance to coast over all track points.
- **Str_Change_In_DOT:** Difference in DOT between the first track point and the last track point.
- **Pcw_vs_Str_Speed_Diff:** Difference between the piecewise average speed and the straight line average speed.
- **Pcw_Avg_Course_vs_DOT:** Difference between the piecewise average course and the piecewise average DOT

DOT = direction of travel

GINI IMPORTANCE

GINI order	Description
1	Distance travelled - distance between first and last track points
2	The average distance travelled between segments
3	The total distance travelled over all segments
4	The average change in direction over all segments
5	The cumulative change in direction over all segments
6	The average velocity over all segments
7	The number of stops velocity < 0.5knots
8	The standard deviation of the direction of travel over all segments
9	The average velocity between the first track point and the last
10	The standard deviation of the course over all segments

COMPARISON OF CLASSIFIERS

Classifier	Feature Set	F1-Score
MLP	Top 20	83.6%
MLP	Top 15	83.6%
MLP	Top 20	83.5%
RF	All	82.9%
KL-NN	Top 10	80.4%