Julia Part Il

Julia for Data Science

Prof. Matthew Roughan
matthew.roughan@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/

UoA

Oct 31, 2017

THE UNIVERSITY N\
#ADELAIDE ?»ACEMI

AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE FOR
MATHEMATICAL AND STATISTICAL FR2NTIERS

M.Roughan (UoA) Oct 31, 2017 1/41

http://www.maths.adelaide.edu.au/matthew.roughan/

A basic problem about any body of data is to make it more
easily and effectively handleable by minds — our minds,

her mind, his mind.
John W. Tukey, Exploratory Data Analysis,

Addison-Wesley, 1977

M.Roughan (UoA) Oct 31, 2017 2/41

M.Roughan (UoA)

Section 1

Interface Cuteness

@ Matlab uses help, Julia switches into help mode by typeing 2
» lookfor in Matlab becomes apropos, e.g.,
apropos ("determinant")
@ In Julia can access OS commands by typing ;, e.g.,
i pwd
@ Useful things to know
» history with up and down keys
» matches partial strings
» auto-complete with TAB
@ Standard shell-commands
» Ctrl-c interrupt process
» Ctrl-a start of the line
» Ctrl-e end of the line
» Ctrl-d exit

@ Startup file “/.juliarc.jl

M.Roughan (UoA) Oct31,2017 4/41

Other useful bits and pieces

@ Comments in shell-style #
@ Functions that modify their arguments have a name like sort!
@ Useful commands

whos ()

@which sin (2)

versioninfo ()
@ Numerical constants

pi

golden

e

im

eulergamma
@ Long numbers: 1_000_000
@ Others useful constants

JULIA_HOME # path to julia executable
nothing # function that returns void

M.Roughan (UoA) Oct 31, 2017 5/41

Section 2

Plottlng

[m] .) E N
M.Roughan (UoA)

Plot packages

There are several plotting packages
@ PyPlot: emulates Matlab, through Python’s matplotlib
@ Gadfly: emulates R’s ggplot
@ Plots: aims to become front end for all backends

@ GR, UnicodePlots, Plotly, PlotlyJS, Vega, Winston, StatsPlots,
PlotRecipes, GLVisualize, PGFPlots, Qwt, ...

M.Roughan (UoA) Oct 31, 2017 7/41

PyPlot
https://github.com/JuliaPy/PyPlot.Jl

@ You should have it installed (see startup sheet)
» it uses PyCall to call Python
» uses Julia’s multimedia backend to display using various Julia
graphical backends (Qt, GTK, ...)
» it should be fairly portable
@ Syntax is intended to be similar to Matlab

» as implemented in matplotlib
http://matplotlib.org/api/pyplot_api.html

using PyPlot
x = linspace (0,2xpi, 1000);

y = s8in. (3 » x + 4 % cos. (2 * x));
plot (x, y, color="red", linewidth=2.0,
linestyle="--")

title ("A sinusoidally modulated sinusoid")

M.Roughan (UoA) Oct 31, 2017 8/41

https://github.com/JuliaPy/PyPlot.jl
http://matplotlib.org/api/pyplot_api.html

Main commands
You can get a listing of commands by typing PyPlot .TABR TAB
Some examples

plot
gct ()
x1im
xlabel
xkcd
surf
bar
figure
fill
pie
text
scatter

When running in a script, you need to use show () to get the fig to
display.

M.Roughan (UoA) Oct 31, 2017 9/41

Example 1

using PyPlot
x = 0:0.1:2+xpi;

y = 0:0.1:pi;

X = repmat (x, 1, length(y));

Y = repmat (y’, length(x), 1);

S = [cos(x[1]) + sin(y[]J]) for i=l:length(x),
j=1l:length(y)]

surf (X, Y S, cmap=ColorMap ("jet"), alpha=0.7)

xlabel ("x")
ylabel ("y")

M.Roughan (UoA) Oct 31, 2017 10/ 41

Example 2

using PyPlot
xkecd ()
plot([0,1], [0,11])

title (L"Plot of $\Gamma_3(x)s$")
savefig("plot.svg")

or PNG or EPS or PDF

LaTeXString defined by ...

M.Roughan (UoA)

More Examples

https://gist.github.com/gizmaa/7214002

https://lectures.quantecon.org/jl/julia_plots.html

M.Roughan (UoA)

https://gist.github.com/gizmaa/7214002
https://lectures.quantecon.org/jl/julia_plots.html

Section 3

A Stupidly Short Tour of Packages

=] = = E E Qe
M.Roughan (UoA)

Installing Packages

Packages are a collection of code encapsulated into a set of
Modules, and (usually) put on GitHub in a standard format

@ Adding a package can be done in a few ways, but the most

standard is
Pkg.add ("PyPlot™")
Pkg.update ()

» takes care of dependencies
» installs code

@ Get status, and see where code is

Pkg.status ()
Pkg.Dir.path ()
LOAD_PATH

M.Roughan (UoA) Oct 31, 2017

14 /41

Using Packages

Packages are a collection of code encapsulated into a set of
Modules, and (usually) put on GitHub in a standard format

@ Commands to use or import
using PyPlot
import PyPlot

» using simple access to all exported functions
» import uses names space of module, e.g., PyPlot .plot

@ Other ways to import code

include ("Code/my_code.jl")
reload("PyPlot")

M.Roughan (UoA) Oct 31, 2017

15/ 41

Lots of Packages

https://pkg.julialang.org/

@ 1518 registered packages!

@ Some trending packages
https://github.com/trending/Jjulia

» Deep Learning https://github.com/denizyuret/Knet.jl

» |Julia is a Jupyter interactive environment
https://github.com/Julialang/IJulia.jl

» Gadfly is ggplot-like plotting
https://github.com/GiovineItalia/Gadfly. jl

» PyCall lets you call Python
https://github.com/JuliaPy/PyCall.jl

» Convex programming
https://github.com/JuliaOpt/Convex.jl

| 3

@ | will talk about a couple of direct use in Data Science

M.Roughan (UoA) Oct 31, 2017 16/ 41

https://pkg.julialang.org/
https://github.com/trending/julia
https://github.com/denizyuret/Knet.jl
https://github.com/JuliaLang/IJulia.jl
https://github.com/GiovineItalia/Gadfly.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaOpt/Convex.jl

DataFrames

@ Concept comes from R (as fas as | know)
@ Like a 2D array except

» can have missing values
» multiple data types

* quantitative
* categorical (strings)

» labelled columns
@ Nice mapping from Frame to CSV (or similar)

https:
//en.wikibooks.org/wiki/Introducing_Julia/DataFrames

M.Roughan (UoA) Oct 31, 2017 17 /41

https://en.wikibooks.org/wiki/Introducing_Julia/DataFrames
https://en.wikibooks.org/wiki/Introducing_Julia/DataFrames

DataFrames
Download the following dataset, and put in a local folder called Data

https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/datasets/Titanic.csv

using DataFrames

data = readtable ("Data/Titanic.csv",
nastrings=["NA", "na", "n/a", "missing"])

head (data)

size (data)

showcols (data)

datal[:Name]

temp = deepcopy (data)

push! (temp, @data([1314, "my bit", "nth", NA, "male

tail (temp)

deleterows! (temp, 3:5)

data[datal[:, :Sex] .=="female", :]
data[:height] = @data(rand(size(data,l)))
sort! (data, cols = J[order (:Sex), order(:Age)])

M.Roughan (UoA) Oct 31, 2017 18/41

https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/datasets/Titanic.csv

JSON

@ JSON = JavaScript Object Notation
@ Data exchange format

» increasingly popular

» lightweight

» portable

@ Stores name/value pairs

» s0 it maps to a Dictionary well
» but lots of other data can be stored as JSON

http://www. json.org/

M.Roughan (UoA) Oct 31, 2017 19/41

http://www.json.org/

JSON

Download the following dataset, and put in a local folder called Data

https://raw.githubusercontent.com/corysimmons/colors. json/master/colors. json

import JSON

c = JSON.parsefile("Data/colors.json")
c["purple"]

JSON.print (c)

M.Roughan (UoA) Oct 31, 2017 20/ 41

https://raw.githubusercontent.com/corysimmons/colors.json/master/colors.json

Distributions

@ Package for probability distributions and associate facilities

moments

pdf, cdf, logpdf, mgf
samples

Estimation: MLE, MAP

@ Included here because

» its useful
» its a nice example of a Julia package
* type hierarchy used to provide structure to RVs
e.g., Distributions — Univariate — Continuous — Normal
* multiple dispatch used to call correct version of generically named
functions
* easy to add a new one

v

v vy

https:
//juliastats.github.io/Distributions.jl/latest/

M.Roughan (UoA) Oct 31, 2017 21 /41

https://juliastats.github.io/Distributions.jl/latest/
https://juliastats.github.io/Distributions.jl/latest/

Distributions

using Distributions
srand (123)

d = Normal (0.0
x = rand(d, 10
quantile. (d,
params (d)
minimum (d)
location (d)
scale (d)

)
[0.5, 0.975])

x = rand(d, 100)
fit_mle (Normal, x)

M.Roughan (UoA) Oct 31, 2017 22/41

M.Roughan (UoA)

Section 4

Parallel Processing

Julia Macros

@ Macros look a bit like functions, but begin with @, e.g.,

@printf ("Hello %s\n", "World!")
@printf "Hello %s\n" "World!"

@ Why?

» Macros are parsed at compile time, to construct custom code for
run time

* e.g., for @print £, we want to interpret the format string at compile
time,

* In ¢, the printf function re-parses the format string each time it is
called, which is inefficient

* Also means that C compilers need to be very smart to avoid many
hard-to-debug mistakes of the wrong types of arguments being
passed to printf

M.Roughan (UoA) Oct 31, 2017 24 /41

Julia Macros

@ Julia uses quite a few macros, and you can define your own
@time [sin(i) for i in 1:1000007;
@which sin (1)
@show 2 + 2
macroexpand (quote @time sin (i) end)

@ Macros can be MUCH faster ways of implementing code
https://statcompute.wordpress.com/2014/10/10/
julia-function-vs—-macro/

@ Macros can be used to automate annoying bits of replicated code,
e.g., Gtime

@ It’s part of the meta-programming paradigm of Julia

» ideas from Lisp
» Julia code is represented (internally) as Julia data
» SO you can change the “data”

M.Roughan (UoA) Oct 31, 2017 25/41

https://statcompute.wordpress.com/2014/10/10/julia-function-vs-macro/
https://statcompute.wordpress.com/2014/10/10/julia-function-vs-macro/

What Julia Does

@ Raw Julia code is parsed

» converted into an Abstract Syntax Tree (AST), held in Julia
» syntax errors are found

© Create a deeper AST

» Macros play here - they can create and modify unevaluated code
© Parsed code is run

» hopefully really fast

M.Roughan (UoA) Oct 31, 2017 26 /41

So what does that have to do with Parallel
Programming?

@ Julia has several functions and macros to aid in parallel
processing

@ | think the coolest is the “Map/Reduce” functionality introduced by
@parallel macro

» maybe you can see why it is a macro?

M.Roughan (UoA) Oct 31, 2017 27 /41

Setting up for Multi-Processor Ops

There are two approaches for a single, multicore machine
> julia -p 4

julia > addprocs (3)
julia > procs()
julia > nprocs /()

I’'m not going to get into how to build a cluster

M.Roughan (UoA) Oct 31, 2017

28/ 41

Map Reduce

@ Many simple processes can be massively parallelised easily by
decomposing them into Map-Reduce operations

@ Map: apply an (independent) function or mapping to a small piece
of data

@ Reduce: combine the results of all the mappings into a summary

@ It's a particularly good framework for multiple simulations run in
parallel

M.Roughan (UoA) Oct 31, 2017 29 /41

@parallel

First make sure that all processes have the required environment

@everywhere cd("/home/mroughan/Presentation/Julia/cC
@everywhere include ("my_code.j1")

Now run parallelised loop, aggregating results with operator +

nheads = (@parallel (+) for i = 1:200_000_000
Int (rand (Bool))
end

M.Roughan (UoA) Oct 31, 2017 30/ 41

M.Roughan (UoA)

Section 5

Tips and tricks

Type stability

Use @t ime to compare the speed of these two functions for large n

function tl1 (n) function t2 (n)
s =0 s = 0.0
for i in 1:n for i in 1:n
s += s/1i s += s/1i
end end
end end

M.Roughan (UoA) Oct 31, 2017 32/41

Don’t avoid loops

Use @t ime to compare the speed of these two functions for large n

function tl1 (n) function t2 (n)
X = zeros (n) x = collect(l:n)."2
for 1 in 1:n end
x[1] = 172
end

return x
end

M.Roughan (UoA) Oct 31, 2017 33/41

Avoid global variables

@ Apart from the usual arguments
@ Hard for compiler to optimise around, because type may change
» if you need them, and they don’t change, define them as constants

const DEFAULT_VAL = 0

@ Note variables defined in the REPL are global
@ Execute code in functions, not global scope
» write functions, not scripts

M.Roughan (UoA) Oct 31, 2017 34 /41

Pre-allocate outputs

Use @t ime to compare the speed of these two functions for large n

function tl1 (n) function t2 (n)
xXx = zeros (Int64, n) x = [1]
for 1 in 1:n for i in 2:n
x[1] = 172 push! (x, 172)
end end
return x return x
end end

M.Roughan (UoA) Oct 31, 2017 35/41

Access arrays in memory order, along columns

@ 2D arrays stored in column order (as in Fortran)
» C and Python numpy are in row order

@ Accessing in this order avoids jumping around in memory
» get the best value out of pipeline and cache

M.Roughan (UoA) Oct 31, 2017 36 /41

Lots more tips

@ https://docs.julialang.org/en/latest/manual/
performance-tips/

@ https://github.com/Gnimuc/JuliasSoO
@ http://blog.translusion.com/posts/julia-tricks/
@ https://julialang.org/blog/2017/01/moredots

it
N
el
2

M.Roughan (UoA)

https://docs.julialang.org/en/latest/manual/performance-tips/
https://docs.julialang.org/en/latest/manual/performance-tips/
https://github.com/Gnimuc/JuliaSO
http://blog.translusion.com/posts/julia-tricks/
https://julialang.org/blog/2017/01/moredots

Standard Tools

@ Debugging https://github.com/Keno/Gallium. j1

@ BenchmarkTools package
https://github.com/JuliaCI/BenchmarkTools. jl

@ Profiler https:
//docs.julialang.org/en/latest/manual/profile/

@ Lint package https://github.com/tonyhffong/Lint.jl

@ Unit testing https:
//docs.julialang.org/en/stable/stdlib/test/

@ Literate programming (aka Knitr, ...)
https://github.com/mpastell/Weave. jl, and idulia

M.Roughan (UoA) Oct 31, 2017 38/41

https://github.com/Keno/Gallium.jl
https://github.com/JuliaCI/BenchmarkTools.jl
https://docs.julialang.org/en/latest/manual/profile/
https://docs.julialang.org/en/latest/manual/profile/
https://github.com/tonyhffong/Lint.jl
https://docs.julialang.org/en/stable/stdlib/test/
https://docs.julialang.org/en/stable/stdlib/test/
https://github.com/mpastell/Weave.jl

Standard Tools

@ There is a lot more to learn
function definition

» creating modules

> types

» interfaces to other languages
>

v

@ | tried to concentrate on things where | think it is hard to get
started learning yourself

M.Roughan (UoA) Oct 31, 2017 39/41

Final Comment

Julia is v.shiny, but it’s not all roses

@ Current version is 0.6
» each 0.1 increment has introduced “breaking” changes
» the core is still evolving
» it's getting better, but change is painful

@ Some libraries aren’t all there
» stagnation, ...

@ Plotting

» argggh!

M.Roughan (UoA) Oct 31, 2017 40/ 41

Conclusion

| don’t like endings, so here are some quotes to go on with.

We — or the Black Chamber — have a little agreement
with [Knuth]; he doesn’t publish the real Volume 4 of the
Art of Computer Programming, and they don’t render him
metabolically challenged.

Charles Stross, The Atrocity Archive, 2001

M.Roughan (UoA) Oct 31, 2017

41/41

Some more useful references
@ https://github.com/trending/julia

@ https://docs.julialang.org/en/latest/manual/
performance-tips/

M.Roughan (UoA)

https://github.com/trending/julia
https://docs.julialang.org/en/latest/manual/performance-tips/
https://docs.julialang.org/en/latest/manual/performance-tips/

Bonus frames

	Get Started
	Plotting
	A Stupidly Short Tour of Packages
	Parallel Processing
	Tips and tricks

