Julia Part |

Julia for Matlab Users

Prof. Matthew Roughan
matthew.roughan@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/

UoA

Oct 31, 2017

THE UNIVERSITY N\
#ADELAIDE ?»ACEMI

AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE FOR
MATHEMATICAL AND STATISTICAL FR2NTIERS

M.Roughan (UoA) Oct 31, 2017 1/33

http://www.maths.adelaide.edu.au/matthew.roughan/

| write to find out what | think about something.
Neil Gaiman, The View From the Cheap Seats

M.Roughan (UoA) Oct 31, 2017 2/33

M.Roughan (UoA)

Section 1

@ The reason | feel like we can do this is because (I hope) you all
know some Matlab, and Julia is syntactically and operationally
very much like Matlab

» syntax is very similar

» REPL' is similar
* tab completion, and up arrows work
* ? =help
* ; = shell escape to OS

» JIT compiler

» Use cases are similar

'REPL = Read-Evaluate-Print Loop; old-school name is the shell, or CLL
M.Roughan (UoA) Oct 31, 2017 4/33

So have a go

@ You should have installed Julia before the workshop
@ Startitup

» start up varies depending on IDE, and OS
» | am using simplest case (for me): the CLI, on a Mac
» it's all very Unix-y

@ Type some calculations

a =3
b =a+ 2
c =a+ b"2

@ Create a script, e.g., “test.jl”, and “include” it

include ("test.jl")

» its a little more cumbersome than Matlab

M.Roughan (UoA) Oct 31, 2017 5/33

Section 2

Julia Isn’t Matlab (or Octave)

o = = E E Qe
M.Roughan (UoA)

Julia may look a lot like Matlab but

@ under the hood its very different

@ and there are a lot of changes that affect you
otherwise why would we bother?

M.Roughan (UoA)

Oct 31, 2017

7/33

Why Julia? Big Differences

@ Faster (natively)
» depends on what you are doing though
@ Better name spaces
» better for modules
@ Better Support for Types and Data Structures

» Strongly typed, but dynamic
» Lots of useful types
* e.g., Dictionaries (associative arrays)

@ Homoiconic: Julia parses its code into Julia data structures (which
we can potentially manipulate)

@ Concurrency

M.Roughan (UoA) Oct 31, 2017 8/33

(Native) Speed is Key

High-level languages

interpreted compiled
interactive stafic types
exploratory programming old/boring
dynamic types
cool i
eg. ulia eg.
M%ﬂab C/qC++
R Fortran
Python
Easy Fast

M.Roughan (UoA) Oct 31, 2017

9/33

Faster: Their Benchmarks

julia | source | downloads | docs | blog | community | teaching | publications | rss

L]
L]
103 °
8 benchmark
o ® rand_mat_mul
102 *
® ° ! ° : ra_nd_mat_stat
pi_sum
L 8 @ printfd
° [} [}] -
101) e © mandel
® -] ® guicksort
] ® T
-] ° L . e efb
- ® parse_int
100 S s 2 ° L]
°

Julia Fortran Go JavaScript PythonMathematica R Matlab Octave

@ y-axis is powers of 10
@ Relative to C performance
@ Smaller is better

M.Roughan (UoA) Oct 31, 2017

10/33

Faster: My Benchmarks
Simple function that calculates whether 3 points in R? are in clockwise
or counter-clockwise order.

time (relative to raw C code)

M.Roughan (UoA)

= Matlab|

3 Julia

Oct 31, 2017

11/33

Less Obvious, But Important Differences

@ Lots, lets deal with 1 by 1
@ | will focus on the points that gave me the most pain or pleasure

M.Roughan (UoA) Oct 31, 2017 12/33

1D and 2D Arrays

@ Similar to Matlab
» row based definition (as in Matlab)
» similar constructors: zeros, ones,
@ Array definition is slightly different
» no commas in row definition
» commas or semicolons separate rows, but with slightly different
meaning
» can have any type of element
@ Julia has true one-dimensional arrays, i.e., vectors

» a single column of a 2D array is not the same as a vector
» for me there are some slight weirdnesses in this
» Can lead to confusing bugs to start with, but can also allow for more
efficient code.
* how many Matlab functions begin by checking row or col vector input,
or changing it around?

M.Roughan (UoA) Oct 31, 2017 13/33

1D and 2D Arrays

Try It!
A= [1 2 3]
B = [1, 2.0, 3]
c =11, 2, 3 // 4]
D1 = [[1 2 3], [4 5 6] 1]
D2 = [1 2 3; 4 5 6]
D3 = [12 3
4 5 6]
E = Array{Inté64} (2,3)
F = ["stringl™ "string2"]
G = zeros (2, 3)
H = ones (Int64, 3)
?ones

M.Roughan (UoA) Oct 31, 2017 14/33

Array Indexing

@ Can still use Matlab forms : and end
@ But use square brackets for array indexing
@ Try It!

A[2]

D3[2,3]

D3[2, :]

D3[2, end]

@ Square brackets are better

» separates functions from arrays
» consistent with array definition
» avoids name clashes, and hence bugs

@ But | keep typing it wrong :(

Like Matlab, Julia starts indexing from 1, not 0

M.Roughan (UoA)

Oct 31, 2017

15/33

Julia arrays are assigned by reference

@ If you type A = B, you are not creating a copy of B, you are
creating a reference, so

@ Try It!

|
[
N
w

Il
w

|
Q
o
e}
<

(X) # create an actual copy, not a ref

XONN XK KX
-
Il
DS

@ Same is true of function array arguments: they are passed by
reference

» a function can alter its inputs
@ This is efficient, but can lead to some obscure bugs
» Matlab has a fancy hybrid system, that is actually pretty nice IMHO

M.Roughan (UoA) Oct 31, 2017 16/33

Julia has “tuples”

@ Almost like an array

» ordered sequence of values
» denoted by round braces
» but can index them as with arrays

@ But they are immutable
» once created you can’t change them
» can be very efficient
@ Try It!
t = (1,2,3,4)
t[3:end]
t[l] = 2
@ Used all over the place, e.g.,

» function argument lists
» returning multiple arguments from functions

M.Roughan (UoA) Oct 31, 2017 17/33

Range Objects and lterators

@ In Julia a : b constructs a Range object, not a vector

@ You can iterate over a Range

» more efficient because it lazily calculates values

* doesn’t use as much memory
* saves effort if you break out of the loop

@ If you want the vector use collect, but often you don’t need to

Try It!

x = 3:2:11

for 1 = x
println (i)

end

x[3:end-1]

x + 10

collect (x)

M.Roughan (UoA)

Oct 31, 2017

18/33

Semicolons, Ellipsis, and Comments

@ Matlab
» ; at the end of a line suppresses output
» ... extends aline
» Matlab comments preceded by %
Julia comments preceded by #
@ Julia

» ; at end of line doesn’t do anything except when typing interactively
in REPL

* e.g., don’'t need semi-colons in function defs
» incomplete lines are automatically continued

o Try It!?

x = 3 +
2

2| notice that the Atom-based IDE doesn’t do line continuation in its console.
M.Roughan (UoA) Oct 31, 2017 19/33

" notation for everything

@ The Matlab idea of . x is extended to most other operators
Try It!

[2,4] .= [10, 20]
[1/213] C [1/213]
[3,4] .== [3,5]

[3,4] .< [3,5]
@ And BTW, we can use C-like syntax to

x =1

but not 1 ++

M.Roughan (UoA) Oct 31, 2017

20/33

Stronger support for data types with multiple dispatch

=3 // 6

typeof (a), typeof(b), typeof (c)
sgrt (-1)

sqgrt (complex (-1))

Q
|

M.Roughan (UoA) Oct 31, 2017 21/33

Tighter scoping rules

@ Variables have scope of the block they are defined in
Try It!

n =3

for i=1:n
x = 21

end

i

X

@ You need to pre-define the variable outside the loop to use it
outside the loop

» e.g., set i=0 before the loop

M.Roughan (UoA) Oct 31, 2017 22/33

Separate Char and String types (yay!)

@ Single-quotes to define a Char
@ Double-quotes to define a String
@ Concatenation operator is *

Try It!
a = "a’
b = ’x’
ab = "ab"

abc = ab x "c"
abc = ab « Db
abc = ab * string(b)
@ Julia has better string handling in lots of other ways
» regular expressions

M.Roughan (UoA) Oct 31, 2017 23/33

Julia Doesn’t Automatically Grow Arrays

@ This is somewhat annoying but

» avoids inefficient code
» avoids some bugs

@ An alternative approach is to use a comprehension

Matlab Julia
for 1=1:10 x = [1ix1i for 1 in 1:10]
x(1i) = 172
end

In Julia this will be (probably) faster than
x = collect (1:10)."2

M.Roughan (UoA) Oct 31, 2017 24/33

List Comprehensions

@ List comprehensions represent in a more mathematical syntax
> eg.,
{(?li=1,2,...,10}
becomes
[i*i for 1 in 1:10]
@ Syntactic sugar for defining one array in terms of another array or
iterator

» Python-like syntax
» Can replace “in” with €, or =

Try It!

[x for x € 1:2]
[xxy for x=1:2, y=3:4]

M.Roughan (UoA) Oct 31, 2017 25/33

Dictionaries (associative arrays)

@ Dictionaries associate (key, value) pairs

@ Looks like an array indexed by arbitrary objects
Try It!

x = Dict ()
x[1] = "five"
x["three"] = 3
x["three"]

Note | can grow this as | go
@ They are called variously

» dictionaries in Smalltalk, Swift, Python, ...
» hashes in Perl, Ruby, ...

» maps in Java, Go, Scala, Haskell, Matlab in latest versions via Java

@ Julia also has Sets

M.Roughan (UoA)

Oct 31, 2017

26/33

More on Dictionaries

@ Constructing dictionaries
Try It!
dict = DiCt("a" => 1, "Hhr => 2, nen => 3)

dict = Dict{String, Integer} ("a" => 1, "b" => 2)
dict = Dict(string (i) =>sin(pi*1/180) for i=0:360)
dict["90"]
@ Useful functions
Try It!
dict = Dict("a" => 1, "b" => 2, "c¢" => 3);
keys (dict) # which is an iterator
values (dict) # which is also an iterator

for key in keys(dict)
println ("Skey => $(dict[key])")
end
@ Note that entries are not ordered
» uUse sort (collect (keys (dict)))
» use SortedDict from DataStructures package

M.Roughan (UoA) Oct 31, 2017 27/33

Unicode Support

Julia has Unicode support, so the following should be a valid
Lotka-Volerra simulation

B =10 # number of cats
)= 100 # number of mice
for i=1:n
B=8+ 3+ B**gi}
@B=0+ 5+8 - 3«8
end
From https://twitter.com/eloceanografo/status/790939841223589888

Try It!

CTRL-SHIFT-u 03bl
\alpha TAB = 1
\pi TAB

c = "\ul3bl’

M.Roughan (UoA) Oct 31, 2017 28/33

https://twitter.com/eloceanografo/status/790939841223589888

Unicode Support

Alpha \u0391 Beta \u0392 | Gamma \u0393 Delta \u0394

Epsilon \u0395 Zeta \u0396 Eta \u0397 Theta \u0398

lota \u0399 Kappa \u039a | Lambda \u039b Mu \u039c

Nu \u039d Xi \u039e | Omicron \u039f Pi \u03a0

Rho \uO3ai Sigma \u03a3 Tau \u03a4 | Upsilon \u03a5

Phi \u03a6 Chi \u03a7 Psi \u03a8 | Omega \u03a9

alpha \u03bf beta \u0O3b2 | gamma \uO3b3 delta \uO3b4

epsilon \u03b5 zeta \uO3b6 eta \u03b7 theta \uO3b8

iota \uO3b9 kappa \uO3ba | lambda \uO3bb mu \uO3bc

nu \uO3bd xi \uO3be | omicron \uO03bf pi \u03cO

rho \u03c1 altsigma \u03c2 sigma \u03c3 tau \uO3c4

upsilon \u03c5 phi \u03c6 chi \u03c7 psi \u03c8

omega \u03c9 complex \u2102 | naturals \u2115 | rationals \u211a

reals \u211d integers \u2124 forall \u2200 exists \u2203

triangle \u2206 uptri \u2207 isin \u220a pm \u2213

sgrt \u221a int \u222b leq \u2264 geq \u2265
subset \u2283 | intersection \u22c2 union \u22c3

For more see
https://docs.julialang.org/en/latest/manual /unicode—-input/

M.Roughan (UoA) Oct 31, 2017 29/33

https://docs.julialang.org/en/latest/manual/unicode-input/

There are lots more differences between Matlab and Julia ...
but | hope they won'’t bite you this week.

M.Roughan (UoA) Oct 31, 2017 30/33

Some useful references

@ https://learnxinyminutes.com/docs/julia/

@ https://docs.julialang.org/en/release-0.6/
manual/noteworthy-differences/

@ https://cheatsheets.quantecon.org/
@ https://docs.julialang.org/en/stable/

M.Roughan (UoA)

https://learnxinyminutes.com/docs/julia/
https://docs.julialang.org/en/release-0.6/manual/noteworthy-differences/
https://docs.julialang.org/en/release-0.6/manual/noteworthy-differences/
https://cheatsheets.quantecon.org/
https://docs.julialang.org/en/stable/

M.Roughan (UoA)

Section 3

Activity

Activity

Create a function to translate an arbitrary positive integer into Roman

numerals.
@ https://projecteuler.net/problem=89

@ http://www.rapidtables.com/convert/number/
roman-numerals—converter.htm

@ https://en.wikipedia.org/wiki/Roman_numerals

Use standard (modern) form Roman numerals
Skeleton
function int2roman(n::Int)
output a Roman numeral string

end

Save your function into a . j1 file, and “include” it.

M.Roughan (UoA) Oct 31, 2017

33/33

https://projecteuler.net/problem=89
http://www.rapidtables.com/convert/number/roman-numerals-converter.htm
http://www.rapidtables.com/convert/number/roman-numerals-converter.htm
https://en.wikipedia.org/wiki/Roman_numerals

Bonus frames

tic()/toc() performance

M.Roughan (UoA) Oct 31, 2017 33/33

	Get Started
	Julia Isn't Matlab (or Octave)
	Activity

