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Overview

• From unsollicited traffic

Detecting Outages using Internet Background Radiation.

Andréas Guillot (U. Strasbourg), Romain Fontugne (IIJ),

Pascal Mérindol (U. Strasbourg), Alberto Dainotti (CAIDA),

Cristel Pelsser (U. Strasbourg). Under submission.

• From large-scale traceroute measurements

Pinpointing Anomalies in Large-Scale Traceroute

Measurements. Romain Fontugne (IIJ), Emile Aben (RIPE

NCC), Cristel Pelsser (University of Strasbourg), Randy Bush

(IIJ, Arrcus). IMC 2018.

• From highly distributed permanent TCP connections

Disco: Fast, Good, and Cheap Outage Detection. Anant Shah

(Colorado State U.), Romain Fontugne (IIJ), Emile Aben

(RIPE NCC), Cristel Pelsser (University of Strasbourg), Randy

Bush (IIJ, Arrcus). TMA 2017.
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Understanding Internet health? (Motivation)

• To speedup failure identification and thus recovery

• To identify weak areas and thus guide network design
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Understanding Internet health? (Problem 1)

Manual observations and operations

• Traceroute / Ping / Operators’ group mailing lists

• Time consuming

• Slow process

• Small visibility

→ Our goal: Automaticaly pinpoint network disruptions

(i.e. congestion and network disconnections)
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Understanding Internet health? (Problem 2)

A single viewpoint is not enough

→ Our goal: mine results from deployed platforms

→ Cooperative and distributed approach

→ Using existing data, no added burden to the network
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Understanding Internet health? (Problem 3)

Identify the right granularity

Japanese traffic for the March 2011 earthquake, Miyagi prefecture
(top) and nationwide (bottom) Cho et al., CoNext 2011
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Outage detection from unsollicited

traffic



Dataset: Internet Background Radiation
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P1 is advertised to 
the Internet
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Dataset: IP count time-series (per country or AS)

Use cases: Attacks, Censorship, Local outages detection
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Figure 1: Egyptian revolution

⇒ More than 60 000 time series in the CAIDA telescope data.

We use drops in the time series are indicators of an outage.
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Current methodology used by IODA

Detecting outages using fixed thresholds
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Our goal

Detecting outages using dynamic thresholds
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Outage detection process
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Outage detection process
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• When the real data is outside the prediction interval, we raise

an alarm.

• We want a prediction model that is robust to the seasonality

and noise in the data.
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The SARIMA model

S : Seasonal → Remove trends

AR : AutoRegressive (p)

I : Integrated → Normalize mean and variance

MA : Moving Average (q)
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Figure 2: Original time series
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Figure 3: Differentiated time series → removed non-stationarity
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The SARIMA model

S : Seasonal

AR : AutoRegressive (p) → Predict based on past values

I : Integrated

MA : Moving Average (q) → Predict based on past errors
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Our approach

1 Splitting the

data set

• Training with

different p and

q to predict the

validation set

2 Finding the

best parameters

• Minimizing the

regression error

(best p and q)

3 Detection on

the test set

• Detecting and

correcting

outages
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Figure 3: Different data sets
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Figure 3: Making predictions on the validation set (AR = 4,MA = 1)
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Figure 3: Predicting and inpainting the test set to preserve the integrity

of the model
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Outage detection

Definition of an outage

• Points below the prediction interval
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Figure 4: Analyzing the test set with the best model (AR = 4,MA = 1)
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Validation: ground truth

Characteristics

• 130 known outages

• Multiple spatial scales

• Countries

• Regions

• Autonomous Systems

• Multiple durations (from an hour to a week)

• Multiple causes (intentional or non intentional)
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Evaluating our solution

Objectives

• Identifying the

minimal number of IP

addresses

• Identifying a good

threshold

Threshold

• TPR of 90% and

FPR of 2%
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Figure 5: ROC curve
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Summary

Goal

• Detecting worldwide Internet outages

Data Source

• Internet background radiation, a passive source with global

coverage

Solution used

• SARIMA, a time series forecasting technique
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Outage detection from large-scale

traceroute measurements



Dataset: Traceroutes from RIPE Atlas

Actively measures Internet connectivity

• Ethernet port

• Automatically perform active

measurements: ping, traceroute,

DNS, SSL, NTP and HTTP

• All results are collected by RIPE

NCC
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RIPE Atlas: coverage

9300+ active probes!
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RIPE Atlas: traceroutes

Two repetitive large-scale measurements

• Builtin: traceroute every 30 minutes to all DNS root servers

(≈ 500 server instances)

• Anchoring : traceroute every 15 minutes to 189 collaborative

servers

Analyzed dataset

• May to December 2015

• 2.8 billion IPv4 traceroutes

• 1.2 billion IPv6 traceroutes
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Monitor delays with traceroute?

Traceroute to “www.target.com”

Round Trip Time (RTT) between B and C?

Report abnormal RTT between B and C?
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Monitor delays with traceroute?

Challenges:

• Noisy data

• Traffic

asymmetry

• Packet loss
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What is the RTT between B and C?

RTTC - RTTB = RTTCB?
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What is the RTT between B and C?

RTTC - RTTB = RTTCB?

• No!

• Traffic is asymmetric

• RTTB and RTTC take different return paths!

• Differential RTT: ∆CB = RTTC − RTTB = dBC + ep
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Problem with differential RTT

Monitoring ∆CB over time:

Time
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→ Delay change on BC? CD? DA? BA???
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Proposed Approach: Use probes with different return paths

Differential RTT: ∆CB = x0
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Proposed Approach: Use probes with different return paths

Differential RTT: ∆CB = {x0, x1}
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Proposed Approach: Use probes with different return paths

Differential RTT: ∆CB = {x0, x1, x2, x3, x4}

Median ∆CB : • Stable if a few return paths delay change

• Fluctuate if delay on BC changes
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Median Diff. RTT: Tier1 link, 2 weeks of data, 95 probes

−400

−300

−200

−100

0

100

200

300

400

D
if
fe

re
n
ti
a
l 
R

T
T

 (
m

s
)

130.117.0.250 (Cogent, Zurich) - 154.54.38.50 (Cogent, Munich)

Raw values

Ju
n 02 2015

Ju
n 04 2015

Ju
n 06 2015

Ju
n 08 2015

Ju
n 10 2015

Ju
n 12 2015

Ju
n 14 2015

4.8

5.0

5.2

5.4

5.6

D
if
fe

re
n
ti
a
l 
R

T
T

 (
m

s
)

Median Diff. RTT

Normal Reference

• Stable despite noisy RTTs

(not true for average)

• Normally distributed
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Detecting congestion
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Significant RTT changes:

Confidence interval not overlapping with the normal reference
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Packet loss

Worst case: router is not responding

• Cannot obtain RTT values

• Need to identify the faulty link
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Packet forwarding model

Learn usual paths from past traceroutes:

32 / 61



Identifying faulty links

In case of packet loss:

Query the model for the expected next hop

→ Link AB is dropping packets!
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Results

Analyzed dataset

• Atlas builtin/anchoring measurements

• From May to Dec. 2015

• Observed 262k IPv4 and 42k IPv6 links

We found a lot of congested links!

Let’s see only two significant examples
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Study case: DDoS on DNS root servers

Two attacks:

• Nov. 30th 2015

• Dec. 1st 2015
Almost all servers

are anycast

• Congestion at

the 531 sites?

• Found 129

instances altered

by the attacks
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Observed congestion
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Unaffected root servers
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Very stable delay during the attacks

• Thanks to anycast!

• Far from the attackers
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Study case: Telekom Malaysia BGP leak
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Study case: Telekom Malaysia BGP leak
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Study case: Telekom Malaysia BGP leak
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Study case: Telekom Malaysia BGP leak

Not only with Google... but about 170k prefixes!
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Congestion in Level3

Rerouted traffic has congested Level3 (120 reported links)

• Example: 229ms increase between two routers in London!
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Congestion in Level3

Reported links in London:

Delay increase

Delay & packet loss

→ Traffic staying within UK/Europe may also be altered
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But why did we look at that?

Per-AS alarm for delay
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And forwarding too!

Per-AS alarm for forwarding
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Summary

Monitor delays with the Atlas platform

• Billions of (noisy) traceroutes

Detect and locate Internet congestion

• Robust statistical analysis

• Diverse root causes: remote attacks, routing anomalies, etc...

• Give a lot of new insights on reported events

On going work with RIPE NCC:

• Online detection and reports for network operators
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Outage detection from highly dis-

tributed permanent TCP connec-

tions



Proposed Approach

Disco:

• Monitor long-running TCP

connections and synchronous

disconnections from related

network/area

• We apply Disco on RIPE Atlas

data, where probes are widely

distributed at the edge and behind

NATs/CGNs providing visibility

Trinocular may not have

→ Outage = synchronous disconnections from the same

topological/geographical area
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Assumptions / Design Choices

Rely on TCP disconnects

• Hence the granularity of detection is dependent on TCP

timeouts

Bursts of disconnections are indicators of interesting outage

• While there might be non bursty outages that are interesting,

Disco is designed to detect large synchronous disconnections
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Proposed System: Disco & Atlas

RIPE Atlas platform

• 10k probes worldwide

• Persistent connections with

RIPE controllers

• Continuous traceroute

measurements

(see outages from inside)

→ Dataset: Stream of probe connection/disconnections

(from 2011 to 2016)
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Disco Overview

1. Split disconnection

stream in sub-streams

(AS, country,

geo-proximate

50km radius)

2. Burst modeling and

outage detection

3. Aggregation and

outage reporting
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Why Burst Modeling?

Goal: How to find synchronous disconnections?

• Time series conceal

temporal characteristics

• Burst model estimates

disconnections arrival

rate at any time

Implementation: Kleinberg burst model1

1J. Kleinberg. “Bursty and hierarchical structure in streams”, Data Mining

and Knowledge Discovery, 2003.
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Burst modeling: Example

• Monkey causes blackout in

Kenya at 8:30 UTC June,

7th 2016

• Same day RIPE rebooted

controllers
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Results

Outage detection:

• Atlas probes disconnections from 2011 to 2016

• Disco found 443 significant outages

Outage characterization and validation:

• Traceroute results from probes (buffered if no connectivity)

• Outage detection results from Trinocular
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Validation (Traceroute)

Comparison to traceroutes:

• Probes in detected outages can reach traceroutes destination?

→ Velocity ratio: proportion of completed traceroutes in

given time
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→ Velocity ratio ≤ 0.5 for 95% of detected outages
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Validation (Trinocular)

Comparison to Trinocular (2015):

• Disco found 53 outages in 2015

• Corresponding to 851 /24s (only 43% is responsive to ICMP)

Results for /24s reported by Disco and pinged by Trinocular:

• 33/53 are also found by Trinocular

• 9/53 are missed by Trinocular (avg time of outages < 1hr)

• Other outages are partially detected by Trinocular

23 outages found by Trinocular are missed by Disco

• Disconnections are not very bursty in these cases

→ Disco’s precision: 95%, recall: 67% 54 / 61



Outage Characterization (1)

Percentage of traceroutes reaching their target:
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• In most cases probes lost complete connectivity

• For cases in 1-70%, probes have limited connectivity to local

targets (e.g. anycasted services)

• Complete lack of traceroute in case of power outage
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Outage Characterization (2)

Traceroutes allow us to

identify faulty hops

• Learn typical paths

and identify expected

hop

• Found several

forwarding loop

Example: TWC outage

in 2014

• 73% of traceroutes

revealed a forwarding

loop
 10
 20
 30
 40
 50
 60
 70

C
o

n
n

e
c
te

d
p

ro
b

e
 c

o
u

n
t

(a)

TWC probes

 6
 10
 14
 18

27Aug
07:00

27Aug
08:00

27Aug
09:00

27Aug
10:00

27Aug
11:00

27Aug
12:00

27Aug
13:00

27Aug
14:00

B
u

rs
t 

le
v
e

l

(b)

TWC probes

56 / 61



Example of geo-proximate outage

Amsterdam outage (2017)

• Disco’s detection correlated with network problems between

two network elements of a large provider
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Summary:

Disco: Outage Detection using long-lived TCP connections

• Fast:

• Passive monitoring

• Processed 6 years of data in 103 minutes

• Good:

• Precise location of outages in space and time

• 95% precision, 67% recall

• Cheap:

• Generates no measurement packet

• Monitor beyond NATs
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Conclusions and perspectives

We proposed 3 different techniques to detect outages for 3

different sources of data

• Each source of data has its own coverage, noise, properties

• Identifying the suitable model is a challenge

• There is no subsequent ground truth to validate the results
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Turn this
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Into this

http://ihr.iijlab.net
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