## Detecting network outages using different sources of data

The 2nd ACEMS Workshop on Challenges of Data and Control of Networks (ACDCN), Adelaide, Australia

**Cristel Pelsser** University of Strasbourg November, 2018

## Overview

• From unsollicited traffic

Detecting Outages using Internet Background Radiation. Andréas Guillot (U. Strasbourg), Romain Fontugne (IIJ), Pascal Mérindol (U. Strasbourg), Alberto Dainotti (CAIDA), Cristel Pelsser (U. Strasbourg). Under submission.

• From large-scale traceroute measurements

Pinpointing Anomalies in Large-Scale Traceroute Measurements. Romain Fontugne (IIJ), Emile Aben (RIPE NCC), Cristel Pelsser (University of Strasbourg), Randy Bush (IIJ, Arrcus). IMC 2018.

 From highly distributed permanent TCP connections Disco: Fast, Good, and Cheap Outage Detection. Anant Shah (Colorado State U.), Romain Fontugne (IIJ), Emile Aben (RIPE NCC), Cristel Pelsser (University of Strasbourg), Randy Bush (IIJ, Arrcus). TMA 2017.

## Understanding Internet health? (Motivation)



- To speedup failure identification and thus recovery
- To identify weak areas and thus guide network design

#### Manual observations and operations

- Traceroute / Ping / Operators' group mailing lists
- Time consuming
- Slow process
- Small visibility

 $\rightarrow$  Our goal: Automaticaly pinpoint network disruptions (i.e. congestion and network disconnections)

## Understanding Internet health? (Problem 2)

# A single viewpoint is not enough N Operator Traceroute

- $\rightarrow$  Our goal: mine results from deployed platforms
- $\rightarrow$  Cooperative and distributed approach
- ightarrow Using existing data, no added burden to the network





Japanese traffic for the March 2011 earthquake, Miyagi prefecture (top) and nationwide (bottom) Cho et al., CoNext 2011

## Outage detection from unsollicited traffic





#### **Spoofed traffic**



#### **Spoofed traffic**



## Dataset: IP count time-series (per country or AS)





 $\Rightarrow$  More than 60 000 time series in the CAIDA telescope data. We use drops in the time series are indicators of an outage.

## Current methodology used by IODA



#### Detecting outages using fixed thresholds

Our goal



Detecting outages using dynamic thresholds

#### **Outage detection process**



### **Outage detection process**



Prediction and confidence interval

#### **Outage detection process**



- When the real data is outside the prediction interval, we raise an alarm.
- We want a prediction model that is robust to the seasonality and noise in the data.

## The SARIMA model

- ${\sf S}\ :\ {\sf Seasonal}\ \rightarrow\ {\sf Remove}\ trends$
- AR : AutoRegressive (p)
  - I : Integrated  $\rightarrow$  Normalize mean and variance
- MA : Moving Average (q)



## The SARIMA model

- S : Seasonal  $\rightarrow$  Remove *trends*
- AR : AutoRegressive (p)
  - I : Integrated  $\rightarrow$  Normalize *mean and variance*
- MA : Moving Average (q)



Figure 2: Our original time series



Figure 3: Differentiated time series  $\rightarrow$  removed non-stationarity 13/61

## The SARIMA model

- S : Seasonal
- $\mathsf{AR}$  : AutoRegressive (p)  $\rightarrow$  Predict based on past values
  - I : Integrated
- $\mathsf{MA}$  : Moving Average (q)  $\rightarrow$  Predict based on  $\mathit{past\ errors}$



**Figure 2:** Differentiated time series  $\rightarrow$  removed non-stationarity

#### Our approach

- 1 Splitting the data set
- Training with different p and q to predict the validation set
- 2 Finding the best parameters
- 3 Detection on the test set



Figure 3: Different data sets

### Our approach

1 Splitting the data set

- 2 Finding the best parameters
- Minimizing the regression error (best *p* and *q*)

3 Detection on the test set



**Figure 3:** Making predictions on the validation set (AR = 4, MA = 1)

#### Our approach

1 Splitting the data set

2 Finding the best parameters

- 3 Detection on the test set
- Detecting and correcting outages



Figure 3: Predicting and inpainting the test set to preserve the integrity of the model

#### **Outage detection**

#### Definition of an outage

• Points below the prediction interval



**Figure 4:** Analyzing the test set with the best model (AR = 4, MA = 1)

#### Characteristics

- 130 known outages
- Multiple spatial scales
  - Countries
  - Regions
  - Autonomous Systems
- Multiple durations (from an hour to a week)
- Multiple causes (intentional or non intentional)

## **Evaluating our solution**

#### Objectives

- Identifying the minimal number of IP addresses
- Identifying a good threshold

#### Threshold

• TPR of 90% and FPR of 2%



Figure 5: ROC curve



#### Goal

• Detecting worldwide Internet outages

#### Data Source

• Internet background radiation, a passive source with global coverage

#### Solution used

• SARIMA, a time series forecasting technique

## Outage detection from large-scale traceroute measurements

#### Actively measures Internet connectivity

- Ethernet port
- Automatically perform active measurements: ping, traceroute, DNS, SSL, NTP and HTTP
- All results are collected by RIPE NCC



## **RIPE Atlas: coverage**

#### 9300+ active probes!



#### Two repetitive large-scale measurements

- *Builtin*: traceroute every 30 minutes to all DNS root servers ( $\approx$  500 server instances)
- Anchoring: traceroute every 15 minutes to 189 collaborative servers

#### Analyzed dataset

- May to December 2015
- 2.8 billion IPv4 traceroutes
- 1.2 billion IPv6 traceroutes

### Monitor delays with traceroute?

#### Traceroute to "www.target.com"

~\$ traceroute www.target.com traceroute to target, 30 hops max, 60 byte packets 1 A 0.775 ms 0.779 ms 0.874 ms 2 B 0.351 ms 0.365 ms 0.364 ms 3 C 2.833 ms 3.201 ms 3.546 ms 4 Target 3.447 ms 3.863 ms 3.872 ms



Round Trip Time (RTT) between B and C? Report abnormal RTT between B and C?



#### Monitor delays with traceroute?



Traceroutes from CZ to BD

| ~\$ | tracerou | ute www.t          | arget.com              | n          |      |         |
|-----|----------|--------------------|------------------------|------------|------|---------|
| tra | ceroute  | to targe           | t, <sup>-</sup> 30 hop | os max, 60 | byte | packets |
| 1   | A        | 0.775 <sup>m</sup> | s 0.779                | ms 0.874   | ms   |         |
| 2   | В        | 0.351 m            | s 0.365                | ms 0.364   | ms   |         |
| 3   | С        | 2.833 m            | s <b>3.201</b>         | ms 3.546   | ms   |         |
| 4   | Target   | 3.447 m            | s <b>3.863</b>         | ms 3.872   | ms   |         |



 $RTT_{C} - RTT_{B} = RTT_{CB}$ ?

#### What is the RTT between B and C?



 $RTT_C - RTT_B = RTT_{CB}$ ?

- No!
- Traffic is asymmetric
- *RTT<sub>B</sub>* and *RTT<sub>C</sub>* take **different return paths!**
#### What is the RTT between B and C?



 $RTT_C - RTT_B = RTT_{CB}$ ?

- No!
- Traffic is asymmetric
- RTT<sub>B</sub> and RTT<sub>C</sub> take different return paths!
- Differential RTT:  $\Delta_{CB} = RTT_C RTT_B = d_{BC} + e_p$

# Problem with differential RTT





27/61

**Differential RTT:**  $\Delta_{CB} = x_0$ 



**Differential RTT:**  $\Delta_{CB} = \{x_0, x_1\}$ 



**Differential RTT:**  $\Delta_{CB} = \{x_0, x_1, x_2, x_3, x_4\}$ 



Proposed Approach: Use probes with different return paths

**Differential RTT:**  $\Delta_{CB} = \{x_0, x_1, x_2, x_3, x_4\}$ 



**Median**  $\Delta_{CB}$ :

- Stable if a few return paths delay change
- Fluctuate if delay on BC changes

# Median Diff. RTT: Tier1 link, 2 weeks of data, 95 probes



• **Stable** despite noisy RTTs (not true for average)

Normally distributed



Significant RTT changes:

Confidence interval not overlapping with the normal reference



#### Worst case: router is not responding

- Cannot obtain RTT values
- Need to identify the faulty link

# Packet forwarding model

## Learn usual paths from past traceroutes:



# Identifying faulty links

In case of packet loss:



Query the model for the expected next hop



 $\rightarrow$  Link AB is dropping packets!

#### Analyzed dataset

- Atlas builtin/anchoring measurements
- From May to Dec. 2015
- Observed 262k IPv4 and 42k IPv6 links

We found a lot of congested links! Let's see only two significant examples

# Study case: DDoS on DNS root servers

#### Two attacks:

- Nov. 30th 2015
- Dec. 1st 2015 Almost all servers are anycast
  - Congestion at the 531 sites?
  - Found 129 instances altered by the attacks



Early last week, a flood of as many as 5 Million queries per second hit many of the Internet's DNS (*Domain Name System*) Root Servers that act as the authoritative reference for mapping domain names to IP addresses and are a total of 13 in numbers.

The attack, commonly known as **Distributed Denial of Service** (DDoS) attack, took place on two separate occasions.

The first DDoS attack to the Internet's backbone root servers launched on November 30 that lasted 160 minutes (almost 3 hours), and the second one started on December 1 that lasted almost an hour.

#### Massive Attacks Knocked Many of the 13 Root Servers Offline

The DDoS attack was able to knock 3 out of the 13 DNS root servers of the Internet offline for a

# **Observed congestion**



- Certain servers are affected only by one attack
- Continuous attack in Russia

# Unaffected root servers



Very stable delay during the attacks

- Thanks to anycast!
- Far from the attackers











Not only with Google... but about 170k prefixes!

#### Rerouted traffic has congested Level3 (120 reported links)

• Example: 229ms increase between two routers in London!



#### 67.16.133.130 - 67.17.106.150

# **Congestion in Level3**

#### **Reported links in London:**



 $\rightarrow$  Traffic staying within UK/Europe may also be altered

## But why did we look at that?

#### Per-AS alarm for delay



Figure 8: Delay change magnitude for all monitored IP addresses in two Level(3) ASs.

# And forwarding too!

#### Per-AS alarm for forwarding



Figure 9: Forwarding anomaly magnitude for all monitored IP addresses in two Level(3)ASs.



#### Monitor delays with the Atlas platform

• Billions of (noisy) traceroutes

#### Detect and locate Internet congestion

- Robust statistical analysis
- Diverse root causes: remote attacks, routing anomalies, etc...
- Give a lot of new insights on reported events

## On going work with RIPE NCC:

• Online detection and reports for network operators

# Outage detection from highly distributed permanent TCP connections

# **Proposed Approach**

### Disco:

- Monitor long-running TCP connections and synchronous disconnections from related network/area
- We apply Disco on RIPE Atlas data, where probes are widely distributed at the edge and behind NATs/CGNs providing visibility Trinocular may not have



 $\rightarrow$  Outage = synchronous disconnections from the same topological/geographical area

#### **Rely on TCP disconnects**

• Hence the granularity of detection is dependent on TCP timeouts

#### Bursts of disconnections are indicators of interesting outage

• While there might be non bursty outages that are interesting, Disco is designed to detect large synchronous disconnections

# Proposed System: Disco & Atlas

#### **RIPE Atlas platform**

- 10k probes worldwide
- Persistent connections with RIPE controllers
- Continuous traceroute measurements (see outages from inside)



 $\rightarrow$  Dataset: Stream of probe connection/disconnections (from 2011 to 2016)

# **Disco Overview**

- 1. Split disconnection stream in sub-streams (AS, country, geo-proximate 50km radius)
- 2. Burst modeling and outage detection
- 3. Aggregation and outage reporting

#### Atlas probes disconnections



- . End time
- AS123, geo-prox. 456

# Why Burst Modeling?

#### Goal: How to find synchronous disconnections?

- Time series conceal temporal characteristics
- Burst model estimates disconnections arrival rate at any time



## Implementation: Kleinberg burst model<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>J. Kleinberg. "Bursty and hierarchical structure in streams", Data Mining and Knowledge Discovery, 2003.

# Burst modeling: Example



- Monkey causes blackout in Kenya at 8:30 UTC June, 7th 2016
- Same day RIPE rebooted controllers



#### **Outage detection:**

- Atlas probes disconnections from 2011 to 2016
- Disco found 443 significant outages

#### Outage characterization and validation:

- Traceroute results from probes (buffered if no connectivity)
- Outage detection results from Trinocular

#### Comparison to traceroutes:

Probes in detected outages can reach traceroutes destination?
→ Velocity ratio: proportion of completed traceroutes in given time



 $\rightarrow$  Velocity ratio  $\leq 0.5$  for 95% of detected outages

# Validation (Trinocular)

# Comparison to Trinocular (2015):

- Disco found 53 outages in 2015
- Corresponding to 851 /24s (only 43% is responsive to ICMP)

# Results for /24s reported by Disco and pinged by Trinocular:

- 33/53 are also found by Trinocular
- 9/53 are missed by Trinocular (avg time of outages < 1hr)
- Other outages are partially detected by Trinocular

## 23 outages found by Trinocular are missed by Disco

• Disconnections are not very bursty in these cases

# $\rightarrow$ Disco's precision: 95%, recall: 67%

# Outage Characterization (1)

Percentage of traceroutes reaching their target:



- In most cases probes lost complete connectivity
- For cases in 1-70%, probes have limited connectivity to local targets (e.g. anycasted services)
- Complete lack of traceroute in case of power outage
### Outage Characterization (2)

## Traceroutes allow us to identify faulty hops

- Learn typical paths and identify expected hop
- Found several forwarding loop

# Example: TWC outage in 2014

• 73% of traceroutes revealed a forwarding loop



#### Amsterdam outage (2017)

• Disco's detection correlated with network problems between two network elements of a large provider



#### Disco: Outage Detection using long-lived TCP connections

- Fast:
  - Passive monitoring
  - Processed 6 years of data in 103 minutes
- Good:
  - Precise location of outages in space and time
  - 95% precision, 67% recall
- Cheap:
  - Generates no measurement packet
  - Monitor beyond NATs

We proposed 3 different techniques to detect outages for 3 different sources of data

- Each source of data has its own coverage, noise, properties
- Identifying the suitable model is a challenge
- There is no subsequent ground truth to validate the results

#### Turn this





http://ihr.iijlab.net